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Abstract: High energy consumption nowadays alongside with concerns on the environment had caused rising demand for 

synthetic alternative fuels. These include biofuels that can be produced from a variety of engineered microbes such as 

Escherichia coli. In the metabolic engineering field, this is done by genetically modifying the target microbes to obtain 

optimal production of a particular biochemical. Conventional metabolic engineering approaches often intuitive, but with 

advancements in modern biology, vast amount of informative data generated from time to time to describe the metabolism 

system of the microbes more thoroughly. Discoveries from interpreting these available data using computational 

approaches are highly beneficial to metabolic engineers, especially professionals working in the in silico metabolic 

engineering field. Within the past decade, many computational approaches and routines have been proposed and 

developed in providing a platform to discover rational strategies to aid biologists in engineering the metabolic network. 

Here, efforts to find the optimal butanol production route in E. coli as well as several optimization algorithms currently 

available for finding optimal solution to enhance biochemical production in designated target microbe are discussed. This 

review aims to show different optimization algorithms developed for in silico metabolic engineering and their applications 

in microbial fuel production. 

Keywords: Biofuels, computational biology, in silico metabolic engineering, metabolic networks, microbial strain 
improvement, optimization, system biology. 

1. INTRODUCTION 

 Rapid advancements in transportation and technology 
have increased the demand for more liquid fuels. At the 
present time, the major source is from fossil fuels, but 
depleting resources coupled with increasing demand have 
urged for the development of alternative sustainable fuels to 
suffice the need. Being one of the alternative fuels, biofuels 
have garnered considerable attentions where one of the 
common solutions is through conversion of biomass to 
ethanol. As the very first biofuel being adapted, ethanol is 
unfortunately impractical due to its low energy density, high 
hygroscopicity and inability to blend well with gasoline [1]. 
Thus, higher chain alcohols such as butanol, which possess 
higher energy density and lower hygroscopicity, have 
become the main focus of scientists. These potential 
alternative fuels are natively produced by certain 
microorganisms such as Escherichia coli, Saccharomyces 
cerevisiae, Clostridium acetobutylicum, and so on. However, 
native production of the aforementioned biochemical 
compounds by microorganisms is insufficient to meet 
industrial production level. This has become a challenge for 
metabolic engineers to create a cellular system that can give 
optimal yield efficiently and economically [2]. 
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 Metabolic engineering was introduced almost 20 years 
ago. It is a distinct field from genetic engineering that 
focuses on biosynthetic and metabolic pathways [3] and acts 
as the main platform to improve the design of microbes 
strain including those in biofuels production. To date, efforts 
have been poured into engineering both native and non-
native production host in biofuel production. In order to 
achieve large scale production with ease of modification, 
industrial microorganisms such as E. coli and S. cerevisiae 
are often used since there are well-established genetic tools 
and long track record of successful industrial applications for 
these microorganisms [4]. Most early endeavors are often 
intuitive and with the large amount of omics data being 
generated these days, intuitive analyses and interpretations 
are no longer relevant to aid the illustration and 
understanding of the metabolic behavior of target microbes. 
Moreover, it is also crucial that the analyses and 
interpretations performed can further aid in finding optimal 
and rational strategies in engineering these microbes; this 
field of research is known as computational or in silico 
metabolic engineering. In silico metabolic engineering 
involves the modeling, optimization and simulation of 
related microorganisms to computationally obtain valuable 
prior knowledge on the metabolic system [5] so that rational 
interventions strategies can be proposed (Fig. 1). To date, 
vigorous attempts have been engaged to develop numerous 
approaches, but studies on biofuel (ethanol or butanol) 
productions are considerably lesser. 
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 Here, a brief review will be given on these approaches 
and other available approaches to facilitate better 
understanding on current advances in in silico metabolic 
engineering. 

2. IN SILICO GENOME-SCALE METABOLIC MODEL 

 Recent advancements in genomics have increased the 
availability of complete genome sequences of many 
organisms. These data have spurred the interest of 
researchers in constructing in silico genome-scale metabolic 
models to decipher genome-scale metabolic characteristic 
and behavior. Such simulation can save time, labor and 
research expenditure as it minimizes the amount of real 
laboratory experiments needed to be performed. 

 Reconstructions of these metabolic models are initiated 
by compilation of related stoichiometric reactions in gene 
annotation data [6]. To perform the compilation, linear mass 
balance equations for the metabolites have to be set, and the 
gaps within the network have to be filled according to 
information provided by literature and experiments as well 
as from the well-known databases such as KEGG [7]. The 
models then make suggestions for strain improvements after 
being validated through comparing the simulated data with 
actual experiments. In silico genome-scale metabolic model 
plays an important role to provide “virtual” microbes for 
strain improvement and optimization. 

 Currently, several genome-scale metabolic models have 
been used in microbial fuel production related research and 
Table 1 shows some examples of them. 

3. IN SILICO METABOLIC ENGINEERING ON RELATED 

MICROBIAL FUEL PRODUCTION RESEARCH 

 Based on a comprehensive review [13] done previously, 
there are basically three metabolic engineering strategies in 
production host selection. The first strategy is related to 

using organisms that are capable of forming native products 
of biofuels compounds (ethanol or butanol). The second 
strategy is about utilizing organisms with native substrate; 
these organisms use a wide range of substrates such as 
lignocellulose or syngas that can be further manipulated to 
form biofuels. The third strategy deals with the utilization of 
industrial organisms such as E. coli as a platform to integrate 
biosynthetic pathways to achieve desirable chemicals 
production capabilities. To date, in related researches in  
in silico metabolic engineering for microbial fuels 
production, there are basically two different directions which 
is optimizing the models of native production host to achieve 
such desirable production rate [14, 15] and the integration of 
identified biosynthetic pathways into industrial microbial 
models and manipulated for optimal production of biofuels 
[16, 17]. 

Table 1. Available Genome-Scale Metabolic Models Used in 

Microbial Fuel Production Related Researches 

 

Species Model Reaction Count Refs. 

Escherichia coli 2077 [8] 

Saccharomyces cerevisiae 1149 [9] 

Clostridium thermocellum 577 [10] 

Clostridium acetobutylicum 552; 502 [11,12] 

 

 Generally, in silico metabolic engineering approaches are 
divided into two categories, namely determinative and 
predictive approaches. Within the predictive approaches, 
there are another two categories - pathway-based approaches 
and optimization-based approaches. However, this review 
paper only focuses on the optimization-based predictive 
approaches and related applications in microbial fuel 
production research. Details regarding the other 
aforementioned approaches can be found in [18]. Table 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Illustration of in silico metabolic engineering where (a) omics data are utilized to reconstruct the genome-scale metabolic model; (b) 

the metabolic model is then used as an engineering platform using computational approaches which involve (c) optimization methods and 

analyses to predict the interventions to get optimal phenotype. (d) The improved metabolic model will be validated and the results will 

decide the feasibility of the strategies predicted. The system will also propose the strategies for (e) wet lab experiment for real industrial 

production. 
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gives an overview of the methods being discussed in the 
following sections (3.1 and 3.2). 

3.1. Optimization of Native Production Host 

 As mentioned in the previous section, a native production 
host is one that can natively provide desired product 
formation, and an optimization-based approach is one mainly 
used to identify mutations in the production host to improve 
the desired phenotype. In this case, the production of desired 
biochemical compound and final solution are identified by 
maximizing or minimizing a specified objective. In cellular 
metabolism, regulatory network remains important during 
the engineering of microbes because genetic modification 
without considering regulatory network will cause fatal 
functionality and is lethal to the microbes [14]. 

 A bi-level computational framework, OptReg, has been 
developed to determine optimal activation or inhibition and 
elimination to achieve targeted biochemical overproduction 
[15]. By using OptKnock as the starting point, OptReg 
extends the framework with several algorithmic and 
modeling changes. One of the main changes is the 
introduction of a parameter that can predict the up- and/or 
down regulation in addition to gene-knockouts. 
Conceptually, the introduced regulation strength parameter, 
C, has a value ranging from zero to one and quantifies the 
threshold to determine whether a reaction is up- or down 
regulated. However, previous researches [19, 20] have 
shown that majority of the reactions could not obtain unique 
solutions at steady state when maximization of biomass or 
any other cellular objectives are used. Furthermore, due to 
redundancy in network, a range of flux values are often 
identified for corresponding alternate optima other than the 
biomass. This resulted in the development of another 
extension, which is the implementation of flux 
measurements (range of flux values based on experimental 
data) to describe the base state of the network. This means 
that a range of values, rather than a single value, is used to 
represent the network’s base state before any genetic 
modification applied. Such method has been used in 
optimizing ethanol production in E. coli using the wild-type 
network of E. coli [21] with some fixes done to the central 
metabolism based on the flux measurements extracted from 
previous work [22]. The results were promising where down 
regulation of phosphoglucomutase alongside with deletion of 
oxygen uptake and pyruvate formate lyase of up to 99.8% of 
the maximum theoretical yield of ethanol in E. coli. 

 Other similar approaches which are based on gene 
deletion with considerable attention placed on regulatory 
networks have also been developed [14]. These include the 
OptORF that had been used to predict engineering strategies 
for ethanol production in E. coli. OptORF is different from 
other approaches because it can identify metabolic 
engineering strategies based on gene deletion and 
overexpression, not on reaction deletion. The solution, which 
also considers transcriptional regulatory networks, is thus 
more feasible. OptORF has also been used as an integrated 
model for the metabolism and regulation of E. coli, 
iMC1010v2 [23] which has 906 metabolic genes and 104 
transcription factors (TF). In the study, OptORF introduced a 
new bi-level optimization formulation where GPR 
association (gene-protein-reaction) and transcriptional 

regulations were used as constraints. GPR represents the 
relationships among particular reactions with corresponding 
proteins and specific genes. The transcriptional regulations 
consist of regulatory rules formulated in Boolean. The final 
predicted yield was approximately 86.2% of maximum 
theoretical yield, and it should be noted that transcriptional 
regulatory effects were taken into account. 

 OptReg is powerful in the sense that it considers the 
regulations of genes as well as the flux measurements. 
However, the downside of this model is that it does not 
consider regulatory network like that considered in OptORF. 
Furthermore, the results from OptReg need prudent 
interpretation because the reversible reactions are separated 
into two, which are the forward and backward counter-parts. 
Unlike OptReg, as demonstrated in the integrated model of 
E. coli, OptORF emphasizes on the relationships among 
reaction, protein and genes. Moreover, it can provide highly 
feasible results suitable for real world experiments. 
Nevertheless, improvement can still be done, for example in 
the formulation of regulatory rules, to create more dynamic 
environment. 

3.2. Search and Optimization of Biosynthetic Pathways 

for Non-Native Production Host 

 Identifying the native production host can simplify the 
process without integrating complex biosynthetic pathways 
into the microbes. However, currently there are no microbes 
that can produce desired products in a massive scale and 
have good natural tolerance. Therefore, industrial microbes 
are introduced with foreign genes and biosynthetic 
production pathways to achieve the desired phenotype. 
Despite of that, our knowledge on biosynthetic pathways is 
still limited and even for well-known microorganisms such 
as E. coli, more alternative pathways continue to be 
discovered and used in biofuel synthesis [24]. Furthermore, 
with supportive information provided by rapidly expanding 
compilation of biotransformations such as KEGG [7] and 
BRENDA [25], computational discoveries of novel 
pathways have become even more intense. These novel 
pathways can be further implemented into genome metabolic 
models for in silico strain design. 

 Few approaches have been used for pathways 
identification such as the use of shortest pathways algorithm 
by Ma and Zeng [26] to observe the reaction of genome-
scale metabolic model during reconstruction. A scoring 
algorithm [27] has also been developed to evaluate and 
compare novel pathways based on enzyme-reaction rules. In 
the context of biofuels production, fewer approaches have 
been developed and used in 1-butanol production. 

 Recently, graph theory-based method alongside with an 
optimization-based approach has been used to identify non-
native production route and metabolic interventions for 1-
butanol production in E. coli [16]. With the reaction data 
obtained from KEGG, BRENDA, and the genome-scale 
metabolic model of E. coli, iAF1260, a min-path graph 
procedure was used to locate all possible pathways that 
would link the desired source to a desired target molecule. 
The process remained traceable even while handling large 
amount of data. The novel pathways identified were then 
evaluated using OptFORCE [28] to identify possible genetic 
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interventions that led to overproduction of 1-butanol. 
OptFORCE is an optimization approach which utilizes 
metabolic flux measurement to identify the necessary 
changes in fluxes to achieve a desired optimal solution. 
OptFORCE divides the fluxes into two categories - MUST 
set, which consists of fluxes that must be changed to meet 
overproduction target, and FORCE set (extracted out from 
MUST set), which is a minimal set of direct interventions 
(i.e., knock-outs) that guarantees a pre-specified yield for 1-
butanol. The utilization of flux measurements provides a 
better representation of the metabolic networks. Results from 
the research included the identification of some novel 
pathways for 1-butanol production other than conventional 
fermentative pathways like the ketoacid pathway and 
thiobutanoate pathway. 

 Combination of a graph-based method called 
Biochemical Network Integrated Computational Explorer 
(BNICE) framework [29-31] with structural-based screening 
method was also used to identify novel pathways for 1-
butanol production in E. coli [17]. BNICE framework is 
formulated based on the graph theory to create complex 
networks of compounds and reactions using the generalized 
reaction rules or operators. By setting pyruvate as the 
starting carbon source, BNICE framework is used to search 
all possible linear routes that produce 1-butanol from 
pyruvate up to hundreds and thousands of novel pathways. 

 Different from the research done by Ranganathan et al. 
[16], Wu et al. suggested a structural-based screening 
method to discover novel pathways using molecular docking. 
The authors also introduced an enzyme fitness function to 
characterize the quality of the docked poses. Moreover, the 
enzyme fitness function is able to distinguish the native 
substrate and other native ligands from inactive decoys for a 
diverse set of enzymatic reactions. This introduced structure-
based screening method is able to identify specific proteins 
within a given enzyme class that are most likely to catalyze a 
given novel reaction as well. This provides an ideal balance 

of accuracy and throughput to determine the feasibility of the 
strategies predicted. 

 Both Ranganathan et al. and Wu et al. demonstrated the 
application of combined methods in microbial fuel 
production. However, k-shortest path algorithm was 
employed by Ranganathan et al. to search novel pathway and 
several other pathways like non-fermentative pathways were 
identified while Wu et al. used pathway generation 
algorithm in BNICE to search for novel pathways without 
considering nonlinear branched pathways that converge 
pathways with different intermediates. The results generated 
only had fermentative pathways. In order to assess the 
discovered pathways, both researches used OptFORCE and 
molecular docking respectively. 

 The advantage of using OptFORCE is that it is able to 
identify and classify essential flux for desired 
overproduction. As for the molecular docking method, it can 
be used to assess feasibility on the molecular level, and thus 
provides reliable support for the assessment. Despite of that, 
both methods do not consider regulatory networks, and 
although the solutions put forth by OptFORCE are reliable, 
these solutions are provided on the metabolic flux level only. 
Therefore, multiple rounds of experimental strain 
improvements may be needed to map the FORCE set 
reaction to corresponding gene expression levels. 

4. OTHER ADVANCES IN IN SILICO METABOLIC 

ENGINEERING 

 Besides the computational approaches discussed above, 
there are several other computational approaches available in 
in silico microbial strain design. However, these approaches 
are yet to be used in the case of microbial fuel production. 

 In metabolic engineering, knowledge regarding the 
distribution and behavior of the metabolic fluxes is critical. 
In order to predict how the metabolic fluxes are distributed, a 
number of approaches have been developed such as the flux 

Table 2. Overview of the Advantages and Disadvantages of Computational Approaches to In Silico Metabolic Engineering Used to 

Enhance Microbial Fuel Production 

 

Method Ref. Advantages Disadvantages 

Production in Native Production Host (Ethanol) 

OptORF [14]  Considers the regulatory effects, as demonstrated 
by the integrated model of E. coli 

 Functions based on gene deletion. 

 Regulatory effects are modeled in Boolean and 
do not fully represent dynamic nature of 

metabolism.  

OptReg [15]  Regulation strength parameter for regulation 
prediction (on/off) 

 Used flux measurements to describe the state of 

the metabolic network  

 Reversible reaction are separated into two 
counterparts (forward and backward) and thus 

requires careful interpretation 

 No actual integration of regulatory network. 

Production in Non-Native Production Host (1-Butanol) 

k-shortest path + OptFORCE [16]  Identifies possible novel pathways (fermentative 
and non-fermentative). 

 Uses flux measurements to identify essential 

fluxes for desire overproduction. 

 Provides solution on metabolic flux level only. 

 Lack of mapping between gene expression and 
flux levels. 

BNICE + molecular docking [17]  Structure-based screening for identified pathways. 

 Enzyme fitness function gives reliable and 

accurate results to assess the feasibility of the 
solution. 

 Screening method is not automated. 

 Lack of consideration on dynamicity of the 

metabolic networks. 
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balance analysis (FBA) that has been used to optimize 
alternative objective functions, such as maximizing the 
targeted biochemical production [32]. 

 Other approaches include minimization of metabolic 
adjustment (MOMA) [33] and regulatory on/off mechanism 
(ROOM) [34]. These approaches are used to predict the 
immediate behavior of knockout strains. Extensions of these 
approaches that focus on the dynamicity (internally 
perturbed) of the model have also been developed so that the 
model can be updated and changed over time [35, 36]. 
Efforts have been put into using genetic algorithm in 
predicting gene knockout to obtain desired production of 
targeted biochemical as well [37]. 

4.1. Bi-Level Optimization 

 In order to identify the metabolic engineering strategies 
with highest production level, huge amount of possibilities is 
needed, particularly when the size of the genome-scale 
metabolic model is big and due to the combinatorial nature 
of the problem. This is where the bi-level approach comes 
handy because it can efficiently identify the mutations 
needed to achieve the highest production rate. In fact, many 
of the optimization-based approaches are using this bi-level 
optimization framework, such as OptKnock [38] that 
identifies reaction deletion coupled with cellular growth and 
biochemical production. In order to increase the biochemical 
production, identification and enhancement of mutant 
growth is required. 

 Another approach, OptStrain, consists of multiple steps 
that identify non-native reactions to improve production 
capabilities. The reactions found can be coupled with 
production and growth in the mutant metabolic network. A 
more recent bi-level approach (SimOptStrain) [39], which is 
an improved version of OptStrain [40], is used to identify 
metabolic engineering strategies by simultaneously 
considering gene deletion and novel reaction additions. An 
extension of MOMA [33], named BiMOMA [39], is used to 
predict knockout behavior in MIP-based bi-level problem. 
The aforementioned computational approaches in this 
section are briefly shown in Table 3. 

 

5. CONCLUDING REMARKS 

 The goal of in silico metabolic engineering is to produce 
a useful platform that can provide rational engineering 
strategies from the simulated results of the computationally 
optimized strains. In related research endeavors of microbial 
fuel production, in silico metabolic engineering has 
contributed in finding both connected mutation for native 
production host and biosynthetic pathways that can be 
integrated into non-native production host. As mentioned 
before, many available approaches have been developed for 
in silico metabolic engineering (as shown in Table 3) and 
alongside with on-going advancement on omics researches, 
more rigorous discoveries of new engineering strategies and 
biosynthetic pathways are possible. With these available 
sources of knowledge, current advances in in silico 
metabolic engineering can be further expanded and to benefit 
biofuels production and to ease fuel crisis. 
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