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Abstract. The development of accurate and reliable models for biological systems plays
an important role in both systems and synthetic biology. The models are constructed based
on the ordinary differential equations to observe the concentration change of specific bio-
chemical products. These formulations usually depend on a set of parameters that reflect
the physical properties of the systems, such as reaction and kinetic rates. In most cases,
these parameters are estimated by fitting the model prediction with the corresponding
experimental data. Due to the noisy and incomplete experimental data, metaheuristics
methods are utilized to find the optimal values of these parameters by minimizing the dif-
ference between both data. In this paper, a new optimization method is introduced for the
biological model parameter estimation. The proposed method is developed based on the
hybridization of Artificial Bee Colony (ABC) and Differential Evolution (DE) methods.
In general, this method employs the evolutionary operations of the DE method to improve
the neighboring searching strategy via the ABC method. The accuracy and reliability in
estimating the parameters are demonstrated by using a model of lactose feedback regula-
tion in a bacterial cell. The results showed that the performance of the proposed method
has outperformed the existing methods.
Keywords: Artificial bee colony, Differential evolution, Hybrid optimization, Parameter
estimation, Biological models

1. Introduction. The key issue of systems biology is the development of the models that
replicate the actual processes occurring within the cells. These models are commonly de-
veloped using ordinary differential equations (ODEs) to observe the concentration change
of specific biochemical products. In order to construct an accurate model, the experimen-
tal data are needed to ensure the reliability of the model prediction. The models usually
depend on a set of parameters to physically simulate the biological processes. These may
include the reaction rates, affinity constants and kinetic velocity. However, most of these
parameters are difficult to be extracted from the experimental data directly [1]. Thus,
model fitting techniques are used to estimate these parameters by minimizing the differ-
ence between the experimental data and the model prediction. As the experimental data
are frequently incomplete and noisy, it is a challenging task to estimate these parameters
accurately [1-3].

In this paper, a new hybrid optimization method is introduced to estimate the pa-
rameters in the biological models. The proposed method, Differential Evolutionary Bee
Colony (DEBCO) method, is developed to improve the neighboring searching strategy
via the standard Artificial Bee Colony (ABC) method [4] using the combinatorial evolu-
tionary operations in the Differential Evolution (DE) method [5]. The present method
employs the differential mutation and crossover operations to enhance the searching ca-
pability performed by the employed bees in the ABC method. The performance of the
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proposed DEBCO method for parameter estimation problem is evaluated using a complex
biological model, namely the feedback regulation of lactose operons by bacterial cell [6].
The results showed that the proposed method was capable of finding the parameters with
significant accuracy and acceptable amount of computational time compared with those
produced by the existing methods.

2. Problem Formulation. The parameter estimation problem can be generalized as
an optimization problem. This problem is aimed to find optimal parameters that can
minimize the difference between the model prediction and its corresponding experimental
data. The system is formulated using ODEs as follows:







dS
dt

= g(S, u, p, ts)
Sts = S0

y = h(S(u, p), ts) + ε

(1)

where S is the model state variable of the system, u is the input signal, p = {p1, p2, p3, . . .,
pN} is the set of parameters, ts is the time sampling and ε is the measurement noise.
These equations show that the time-derivative of model state variable, dS

dt
, is represented

by a nonlinear function, g. The observable model output, y, is represented as another
nonlinear function, h, that is formed by the model state variable of the corresponding
time sampling and is associated with the measurement noise. Therefore, the parameters
can be estimated by minimizing the difference between these data as follows:

f(p) = arg min

N
∑

n=1

M
∑

m=1

(ŷm − ym(pn))
2 (2)

where p is the solution (parameter set), M and N are the sampling time and total number
of parameters to be estimated, respectively, and ŷ is the experimental data.

3. Differential Evolutionary Bee Colony Optimization Method. In this paper, a
new hybrid optimization method called DEBCO is introduced. The method is basically
an improvement of the neighboring searching strategy of ABC method using evolution-
ary operations adopted from DE method. Initially, the method starts with a randomly
distributed population of solutions. Each ith solution is composed of a set of vectors
that represent the parameters of the model, xi = {pi1, pi2, pi3, . . . , piN}, where N is the
total number of parameters. The fitness of each ith solution, f(xi), is evaluated. As the
iteration progresses, the method divides the population into two main groups: employed
and onlooker solutions. In a standard ABC method, the employed solutions are subjected
to neighborhood improvement. This is performed by comparing the currently observed
solution with its neighboring solutions [4]. For the ith employed solution, the searching
process is executed based on the following equation:

xi = xi + r1(xi − xj) (3)

where xj is the jth neighboring solution of the current solution xi, and r1 is a uniformly
distributed random number between −1 and 1. In the present method, the employed solu-
tions are subjected to evolutionary improvement before the neighboring searching process
is performed. The evolutionary improvement involves the use of evolutionary operations
from DE method. Firstly, each ith solution is submitted for a mutation operation to
produce trivial solution, vi. The process is carried out using the following rule [5]:

vi =

{

xmin + MR(xi − xmin) if r2 ≥ 0.7
xi Otherwise

(4)

where xmin is the vector of the current global best solution, MR is the predefined mutation
rate and r2 is a uniformly distributed random number between 0 and 1. After that, the
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trivial solution is subjected for a crossover operation to produce the offspring solution.
The operation is performed as follows [5]:

xi(t+1) =

{

vi(t) if r3 ≤ CR

xi(t) if r3 > CR
(5)

where t is the iteration step, CR is the predefined crossover rate and r3 is a uniformly
distributed random number between 0 and 1. As the offspring solution is generated, a
selection operation is executed between the parent solution and its offspring counterpart,
using the following rule:

xi(t+1) =

{

xi(t+1) if f(xi(t+1)) ≤ f(xi(t))
xi(t) if f(xi(t+1)) > f(xi(t))

(6)

Therefore, the solutions with better fitness are retained in the population while those with
least substantial fitness are disregarded [5].

Conversely, the onlooker solutions are subjected to the neighboring improvement by
probability. The probability of each ith solution, probi Pr1 Pri, is calculated as follows [4]:

Pri =
fiti

∑NP

i=1 fiti
(7)

where fiti is the relative fitness of ith solution and NP is the population size. The relative
fitness is computed by using the following rule [4]:

fiti(t+1) =

{ 1
1+f(xi(t+1))

if f(xi(t+1)) ≥ 0

1 + abs(f(xi(t+1))) if f(xi(t+1)) < 0
(8)

As for the solutions that are subjected under this rule, the neighboring improvement
is performed. A greedy selection operation is executed to choose between the original
solution and its onlooker counterpart in terms of fitness values. Lastly, solutions that show
lack of improvement within the given number of iterations are submitted for repopulation.
The process basically relocates these solutions to a new location randomly within the
searching space by following equation [5]:

xi(t+1) = xmin + r4(xmax − xmin) (9)

where xmax and xmin are the maximum and minimum boundaries of the searching space,
respectively, while r4 is a uniformly distributed random number between 0 and 1. The
procedure is repeated until the maximum number of iterations is reached. At this point,
the solution with the best fitness value is selected as the global best solution.

4. Results and Discussion. To demonstrate the effectiveness of the proposed method
for a more complex problem, a biological model consisting of 12 parameters is used. The
model is constructed by using [5] to simulate the feedback regulation of lactose operon in
Escherichia coli bacterium. Fundamentally, this model presents the cellular metabolism
of the bacterium in the absence of glucose but with the availability of external lactose.
The lactose is transported into the cell by the permease, which later will be broken down
into allolactose by the β-galactosidase enzyme. The allolactose feeds back to bind with
the lactose repressor and permits the transcription process by messenger ribonucleic acid
(mRNA). The model is constructed by the following equations [6]:

dA

dt
= kg − (km + kgm)A +

B

ktm

(10)
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dB

dt
= (km + kgb)C +

D

ktb

(11)

dF

dt
= kaA

E

kl + E
− kbC

F

kl + F
= (km + kga)F (12)

dG

dt
= (km + kgp)G +

H

ktb + ktp

(13)

where A, B, C, D, E, F , G, and H are mRNA, partial mRNA, β-galactosidase, partial β-
galactosidase, lactose internal, allolactose, permease, and partial permease concentrations,
respectively. In total, a number of 12 parameters are required to be estimated. The
experimental data of this model is generated in silico, in which the time-series data is
superimposed with white Gaussian noise [7].

The performance of the proposed DEBCO method is compared with those by the stan-
dard PSO, GA, ABC, and two newly proposed methods, namely Artificial Bee Colony
Differential Evolution (ABCDE) [9] and Local Evolutionary PSO [10] methods. The pop-
ulation sizes are set to 20, 40, and 60. The maximum numbers of iterations are fixed
to 100, 500, and 1000. For PSO method, the inertia weight is tuned to 0.5, and the
self-exploitation and swarm-exploration rates are both set to 3.5 [8]. For the GA method,
the mutation and crossover rate are set to 0.1 and 1.5. All methods are executed for
100 independent times and the mean best fitness values and the standard deviations are
computed to demonstrate the consistency of the methods in finding the best solutions.
Table 1 shows the comparison of the mean best parameter values found by the respective
methods and the corresponding best fitness values. It is clearly presented that the pro-
posed DEBCO method has obtained better parameter values with the overall best fitness
values. Figure 1 illustrates the convergence behavior of the methods using population
size of 60. This figure showed that the proposed DEBCO method is managed to converge
relatively faster than other methods. These results suggested that the proposed DEBCO
method is capable of estimating parameters accurately and reliably using the noisy and
incomplete experimental data.

5. Conclusion. In this paper, a new hybrid optimization method, named DEBCO, is
proposed. The aim of this contribution is to introduce the exploitation of information
among neighboring solutions so that this information is beneficially utilized to find a bet-
ter solution through the iterations. The effectiveness of the proposed DEBCO method is
measured by solving the nonlinear parameter estimation problem in the biological model.

Figure 1. Convergence behavior of the optimization methods (for popu-
lation size 60)
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Table 1. Mean best fitness value and standard deviation (in brackets)
found by the methods

Method
No. of

Iterations

Population Size

20 40 60

PSO

100 1.39 × 101

(5.81 × 101)
9.97 × 10−1

(2.12 × 10−1)
5.56 × 10−2

(3.11 × 10−2)
500 3.11 × 10−1

(2.08 × 10−1)
5.75 × 10−1

(4.37 × 10−1)
2.28 × 10−2

(4.45 × 10−2)
1000 1.01 × 10−1

(2.11 × 10−1)
3.75 × 10−1

(2.81 × 10−1)
7.88 × 10−3

(4.34 × 10−3)

GA

100 1.42 × 10−1

(2.20 × 10−1)
7.22 × 10−2

(3.12 × 10−2)
8.22 × 10−2

(4.43 × 10−2)
500 7.72 × 10−1

(3.12 × 10−1)
4.75 × 10−2

(4.01 × 10−2)
5.58 × 10−2

(4.00 × 10−2)
1000 3.40 × 10−1

(5.11 × 10−1)
2.12 × 10−2

(3.36 × 10−2)
7.71 × 10−3

(2.09 × 10−3)

ABC

100 5.13 × 10−1

(3.75 × 10−1)
5.21 × 10−2

(4.10 × 10−2)
4.47 × 10−2

(3.25 × 10−2)
500 3.39 × 10−2

(2.99 × 10−2)
3.55 × 10−2

(2.22 × 10−2)
1.10 × 10−2

(2.79 × 10−2)
1000 1.01 × 10−2

(2.95 × 10−2)
1.25 × 10−2

(2.57 × 10−2)
7.26 × 10−3

(3.77 × 10−3)

LEPSO

100 5.71 × 10−2

(1.12 × 10−2)
8.91 × 10−3

(1.12 × 10−3)
6.01 × 10−3

(3.81 × 10−3)
500 7.28 × 10−2

(5.09 × 10−2)
4.40 × 10−3

(2.32 × 10−3)
4.56 × 10−3

(3.35 × 10−3)
1000 3.78 × 10−3

(2.01 × 10−2)
1.01 × 10−3

(1.78 × 10−3)
8.21 × 10−4

(5.55 × 10−4)

ABCDE

100 3.12 × 10−3

(2.08 × 10−3)
4.41 × 10−4

(3.77 × 10−4)
7.22 × 10−5

(5.51 × 10−5)
500 1.33 × 10−3

(5.18 × 10−3)
1.91 × 10−4

(2.61 × 10−4)
3.01 × 10−5

(1.22 × 10−5)
1000 9.01 × 10−4

(4.22 × 10−4)
9.44 × 10−5

(3.17 × 10−5)
5.56 × 10−6

(1.01 × 10−6)

DEBCO

100 1.71 × 10−5

(1.85 × 10−5)
2.95 × 10−6

(1.10 × 10−6)
4.91 × 10−8

(1.01 × 10−8)
500 2.13 × 10−6

(4.55 × 10−6)
8.99 × 10−7

(3.21 × 10−7)
9.07 × 10−9

(3.81 × 10−9)
1000 1.88 × 10−7

(3.35 × 10−7)
3.35 × 10−8

(1.23 × 10−8)
5.77 × 10−9

(2.71 × 10−9)

The results showed that the convergence speed of the DEBCO method has outperformed
those produced by the existing methods. Moreover, the convergence behavior of the
method suggests that the DEBCO method is also capable of escaping the local optima
more effectively. In the future, the proposed method may be practical to be implemented
for stochastic and spatial temporal modeling as the method can utilize the computational
cost consumption more effectively compared with the existing methods. This is impor-
tant as such modeling techniques require more extensive computational cost than kinetic
modeling used in this paper.
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