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Abstract 

Largely due to the technological advances in bioinformatics, researchers are now garnering interests 

in inferring gene regulatory networks (GRNs) from gene expression data which is otherwise 

unfeasible in the past. This is because of the need of researchers to uncover the potentially vast 

information and understand the dynamic behavior of the GRNs. In this regard, dynamic Bayesian 

network (DBN) has been broadly utilized for the inference of GRNs thanks to its ability to handle 

time-series microarray data and modeling feedback loops. Unfortunately, the commonly found 

missing values in gene expression data, and excessive computation time owing to the large search 

space whereby all genes are treated as potential regulators for a target gene, often impede the 

effectiveness of DBN in inferring GRNs. This paper proposes a DBN-based model with missing 

values imputation to improve inference efficiency, and potential regulators selection which intends to 

decrease computation time by selecting potential regulators based on expression changes. We tested 

our proposed model on the Escherichia coli SOS response pathway which is responsible for 

repairing damaged DNA of the bacterium. The experimental results showed reduced computation 

time and improved efficiency in detecting gene-gene relationships. 
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Introduction 

 
The advance of DNA microarray technology has allowed researchers to design new experimental 

methods for understanding gene expression and regulations. The output, known as gene expression 

data or microarray data, contains immense information such as the behaviours revealed by the system 

under normal conditions; abnormalities of the system if certain parts cease to function; the robustness 

of the system under extreme conditions [1], thus providing a holistic viewpoint of gene expression to 

the researchers instead of only a few genes as in the classical experiments.  

Motivated by the yearning of researchers to understand the complex phenomena of gene 

regulations, gene expression data have become very important in the inferring of gene regulatory 

networks (GRNs) to elucidate the phenotypic behaviours of a particular system. The conventional trial 

and error method of inferring GRNs from gene expression data is clearly not suitable in handling 

large-scale data due to the time-consuming nature of repetitive routines as to achieve precise results 

[2]. To analyse and utilize the immense amount of gene expression data, researchers have already 

developed many computational methods to automate the inferring process [2, 3]. Specifically, 

Bayesian network (BN), which models conditional dependencies of a set of variables via probabilistic 

measure, was extensively utilized by researchers in inferring GRNs from gene expression data. 

BN’s usefulness in inferring GRNs is primarily due to its ability to handle locally interacting 

components with a comparatively small number of variables; able to assimilate other mathematical 

models to avoid the overfitting of data; permits the combination of prior knowledge to reinforce the 

causal relationship. In spite of the advantages above, BN has two critical limitations in which it does 

not permit feedback loops and is unable to handle the temporal aspect of time-series microarray data.  

Due to the fact that feedback loops represent the importance of homeostasis in living organisms, 

researchers have developed the dynamic Bayesian network (DBN) as a promising alternate. Ever 

since the pioneering work of Murphy and Mian [4], DBN has attracted attention from many 

researchers [5, 6, 7, 8, 9]. Nonetheless, normal DBN typically presumes all genes as potential 

regulators against target genes, and therefore causes the excessive computational cost which restrains 
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the efficiency of DBN on large scale gene expression data [8, 9]. Additionally, the missing values 

commonly found in expression data may influence up to 90% of the genes [10], consequently 

affecting the inference results. To address the problems above, we proposed a DBN-based model with 

missing values imputation to improve the inference efficiency, and potential regulators selection 

which decrease computation time by restricting the numbers of potential regulators for each target 

gene. The details of our proposed model are discussed in the subsequent section. 

 

Methods  

 

The proposed model primarily consists of three main steps: missing values imputation, potential 

regulators selection and dynamic Bayesian network (DBN). Fig. 1 illustrates the overview of our 

proposed DBN-based model. Table 1 shows the overview of our proposed model and existing DBN-

based models. 

This experimental study is based on the E. coli SOS response pathway gene expression data 

from Ronen et al. [11] This gene network is an error-prone repair system which responses to damaged 

DNA by arresting cell cycle and inducing DNA repair. Under normal circumstances, the repressor 

protein, LexA, negatively regulates the SOS genes by binding to the promoter region of these genes. 

When DNA damage occurs (The accumulation of single-stranded DNA – ssDNA, due to blockage of 

DNA polymerase), the RecA protein, which acts as a sensor of DNA damage, is activated by binding 

to these ssDNA. The activated RecA then facilitates the self-cleavage of LexA repressor. The drop in 

LexA level in turn causes the SOS genes to be de-repressed. This continues until the damage is 

repaired, whereby the level of activated RecA drops, LexA accumulates and represses the SOS genes 

again. The dataset contains 8 genes observed at evenly spaced 50 instants with 6 minutes intervals. 

However, it also contains missing values which must be first processed. Traditional methods of 

treating missing values include reiterating the microarray experiment which is not economical 

feasible, or simply substitute the missing values by zero or row average. A better solution is to use 

imputation algorithms to estimate the missing values by utilising the observed data structure and 

expression pattern. In view of this, we employed the Bayesian principle component analysis (BPCA) 

imputation algorithm [12] mainly because of its ability to assumes a global covariance structure of the 

dataset by iteratively estimating the posterior distribution of the missing values until convergence is 

achieved, and its efficiency on large-scale data (1 minutes and 23 seconds on the experimental data 

with a Core i3 PC). 

Yu et al. [13] proved that in most cases, transcriptional factors (TFs) experience changes in 

expression level prior to or concurrently with their target genes. With this in mind, it is possible to 

devise an algorithm to reduce the search space by limiting the potential regulators of each target 

genes. Firstly, we determined the cutoff threshold for up-regulation and down-regulation based on the 

distribution of the gene expression values. After that, we categorised the dataset into three classes (up-

, down-regulation and normal) and look for only for the data located in the upper and lower bound 

classes. A time gap of two time points width is created to slide through the data to group regulation 

pairs. Thus, each target gene includes a subset of potential regulators which exhibit prior or 

concurrent expression changes. These are used as the input for the subsequent network inference step 

using DBN. 

DBN, which is derived from BN to describe the stochastic nature of a network against time, 

is used to infer the network based on the input obtained from the previous step. While BN is restricted 

to only steady-state data (static data), DBN readily handles time-series data to identify the causal 

relationships among a set of variables. It also enables the modelling of cyclic network structure while 

inheriting the advantages of BN. Basically, in modelling network from time-series data, values of a set 

of random variables are observed at different points in time. Assuming each time point as a single 

variable Yi, the simplest causal model for asequence of data {Y1,…,Yt} would be a first-order Markov 

chain, in which the state of the next variable is only dependent on the previous variable. By applying 

the chain rule of probabilities and conditional independencies based on Bayes theorem, the joint 

probability distribution (JPD) of the network has the general form of 

. DBN consists of two stages: the parameter learning 

stage followed by the structure learning stage. In the parameter learning stage, we created the data 

matrices of all target genes with their subsets of potential regulators based on the output from 

previous step. We then updated the data matrices by calculating the conditional probabilities of each 

target gene against its respective potential regulators. As DBN structure learning is not certainly NP-
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hard [14], we applied a globally optimal search strategy [15] instead of local search strategy in the 

structure learning stage. 

 

 

Fig. 1. Overview of our proposed DBN-based model with missing values imputation and potential 

regulators selection. 
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Table 1. Overview of our proposed model and existing DBN-based models for inferring GRNs from 

gene expression data. 

 

 

 

 

 

 

 

 

 

 

Results and Discussions 

In this study, we compared the efficiency and computation time of our DBN-based model against 

normal DBN [15]. The experiment results are evaluated based on the work of Radman [16] and 

summarised in Table 2. In Table 2, the first row indicates the network predicted by our proposed 

model and row 2 indicates the network inferred by normal DBN. Our proposed model used 8 minutes 

and 43 seconds against normal DBN which in turn used 23 minutes and 17 seconds on a Core i3 PC 

with 4GB main memory. The potential regulators selection before DBN learning helped to reduce the 

search space by limiting each target gene’s number of potential regulators instead of assuming all 

genes as potential regulators. Our proposed model was able to correctly identify 8 gene-gene 

relationships in the E. coli SOS response pathway (lexA–recA, lexA–polB, lexA–umuD, lexA–uvrY, 

lexA–uvrA, lexA–ruvA, lexA–lexA, recA–recA) (See Fig. 2) against normal DBN’s 4 correctly 

identified gene-gene relationships. The inferred network showed cyclic regulatory edge of recA, 

which corresponds to its ability to self-activated when DNA damage is sensed. On the other hand, 

lexA’s cyclic regulatory edge indicates its self-cleavage mechanism when the level of activated recA 

is raised. Additionally, the proposed model showed relationships between umuD–polB, uvrD–uvrY 

and ruvA–uvrA. Although we considered them as incorrectly identified relationships, based on data 

pattern exploited by the model we suggest that there might be regulatory relationships between these 

genes that could be further investigated on. Nevertheless, the results of this study proved that the 

performance of DBN in inferring GRNs can be improved by imputing missing values and potential 

regulators selection. 

 

 
 

 

 

 Δ

 

Fig. 2. Inferred SOS response pathway for E. coli dataset using our proposed DBN-based model.  
Dash edges (- - -) represent down-regulations and normal edges (    ) represent up-regulations. A cross represents 

an incorrect inference; a triangle represents a misdirected relationship; an edge without any attachment is a 

correct inference. 
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Table 2. The results of experiment study 

 

Note: Shaded row represents the network inferred by our proposed model (DBN_prs) and unshaded row 

represents the network predicted by normal DBN (DBN_norm). Relationships refer to the gene-gene 

relationships. 

 
Summary and Future Work 

 
We proposed a DBN-based model with missing values imputation and potential regulators selection 

to infer GRNs from gene expression data. Based on the dataset of E. coli SOS response pathway, our 

proposed model showed promising results in terms of computation time and efficiency when 

compared to normal DBN. However, the E. coli SOS response pathway dataset was not adequately 

large to fully examine the potential power of the proposed model. Larger datasets such as S. 

cerevisiae cell cycle pathway could be used for further work. Additionally, we are also interested in 

taking account of the transcriptional time lag which is commonly ignored in inferring GRNs from 

gene expression data. As Zou and Conzen [8] pointed out, the lack of an algorithm to handle 

transcriptional time lag is one of the main factors that contributed to the relatively low accuracy of 

inferring GRNs using DBN. Researchers have tried to implement time lag mechanism into the 

potential regulators selection algorithm [8, 9]. Also, it should be noted that presently, our proposed 

model could only handle inter-time slice edges. To learn DBN with both inter- and intra-time slice 

edges remains an interesting point of research. It is suggested by Vinh et al. [17] to learn intra-time 

slice edges separately before combining with the inter-time slice edges and post-processing as an 

alternative to describe gene-gene interactions. Lastly, in spite of the broad practice of using DBN to 

infer GRNs from gene expression data, it is in no way to completely substitute gene intervention 

experiments. The resultant networks should be treated as a guideline or framework of the studied 

biological pathways for future hypotheses testing and intervention experiments. 
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