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Abstract 

By optimizing microbial strains it is possible to improve product yield or improve growth 

characteristics. Microbial strains can be optimized through genetic engineering. It is proven that 

through genetic engineering it is able to obtain the desirable phenotypes. However, it is difficult to 

predict the effects of genetic modifications on the resulting phenotype due to the complexity of the 

networks. Optimization algorithms are implemented in previous works in order to identify the effects 

of gene knockout on the results. Sadly, the previous works face the problem of falling into local 

minima. Thus, a hybrid of Bees Algorithm and Flux Balance Analysis (BAFBA) is proposed in this 

paper to solve the local minima problem and to predict optimal sets of gene deletion for maximizing 

the growth rate of certain metabolite. Lists of knockout genes and the growth rate after the deletion 

for improving the production of succinic acid, glycerol and vanillin as targets are the results from the 

experiments. Genome-scale model of the yeast Saccharomyces cerevisiae is the model organism in 

this paper. By comparing with the previous methods, BAFBA shows better results. The identified list 

suggests gene modifications over several pathways and may be useful in solving challenging genetic 

engineering problems. 
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Introduction  

 

Microbial strains are strains of microorganisms which have received considerable attention for 

genome-scale metabolic networks reconstructions in recent years [1].  Reconstructions of the 

metabolic networks are found to be very useful in health, environmental, energy issues [2] the 

identification of drug targets. The development of computational models for simulating the actual 

processes inside the cell has been expedited by a vast numbers of high-throughput experimental data. 

Constructing an efficient and accurate pathway models that may be useful in predicting cellular 

responses and providing better understanding of complex biological functions is one of the main goals 

in system biology.   

 

There were many algorithms developed in order to identify the gene knockout strategies for obtaining 

improved phenotypes. The first rational modeling frameworks (named OptKnock) for introducing 

gene knockout leading to the overproduction of a desired metabolite was develop by Burgard et al. 

[3,4]. A set of gene (reaction) deletions to maximize the flux of a desired metabolite is identified by 

OptKnock without affecting the internal flux distribution such that growth is optimized. 

 

OptKnock is very promising to find the global optimal solution due to the use of mixed integer linear 

programming (MILP) to formulate a bi-level linear optimization. OptGene is an extended approach of 

OptKnock which formulates the in silico design problem by using Genetic Algorithm (GA). These 

meta-heuristic methods are capable in producing near-optimal solutions with reasonable computation 

time, furthermore the objective function that can be optimized is flexible. SA is then implemented to 

allow the automatic finding of the best number of gene deletions for achieving a given productivity 

goal. However, SA faces the problem of falling into local minima far from the global optimum 

solution. 

 

In this paper, a hybrid of Bees Algorithm and Flux Balance Analysis (BAFBA) is proposed to predict 

the gene knockout strategies. Bees Algorithm (BA) is a typical meta-heuristic optimization approach 
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which was introduced by [5]. The search process of BA is based on the intelligent behaviors of honey 

bees. BA locates the most promising solutions, and selectively explores their neighbourhoods looking 

for the global maximum of the objective function.  BA is proven to be efficient in solving 

optimization problems in the previous studies [5]. While the Flux Balance Analysis (FBA) approach 

which is used to calculate the fitness function is based on a steady state approximation to 

concentrations of the internal metabolites, which reduces the corresponding mass balances to a set of 

linear homogeneous equations. There are two advantages of BAFBA. First, BAFBA requires less 

computational time to solve larger size problems. Secondly, BA works out the local minima problem 

as it is capable of performing local and global search simultaneously. This paper presents the results 

obtained by BAFBA to three case studies where S.Cerevisiae is the target microorganism. This paper 

also evaluates the performance of BAFBA for identifying gene knockout strategies with existing tools 

and compares the performance of BA with the existing methods within experimental approaches. 

Materials and Methods  

In this paper, BAFBA is proposed to predict the gene knockout. Fig. 1 shows the flow of a basic BA. 

The flow of BAFBA is presented in Fig. 2. The important steps are explained in the following 

subsections. 

 
Bee representation of metabolic genotype 

 

One or more genes can be found in each reaction in the metabolic model.  In this proposed method, 

each of those genes is represented by a binary variable indicating its absence or presence (0 or 1), 

these variables form a ‘bee’ representing a particular mutant that lacks some metabolic reactions when 

compared with the wild type (Fig. 3) 
 

 

Note: Desired products represent the gene to be knockout. 

Fig. 1: Flowchart of a basic BA. 

 

Initialization of the population 

 

Firstly, randomly initialize a population of n scout bees.  Each bee is initialized as follows: assume 

that a reaction with n genes. Bees in the population can be initialized by assigning present or absent 

status to each gene randomly. 
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Scoring fitness of individuals 

 

The fitness computation process for each site visited by a bee is evaluated through FBA (Fig. 4). 

Cellular growth is defined as the objective function Z, vector c is used to select a linear combination 

of metabolic fluxes to include in the objective function, v is the flux map and i is the index variable 

(1, 2, 3, …, n).  

Maximize Z, where  

Z = ∑ civi = c.v  
        i   (1) 

where c = a vector that defines the weights for of each flux. 
 

Neighbourhood search  

Neighbourhood searches is carried out in the selected sites, more bees are assigned to search near the 

best sites. The bees can be chosen directly according to their fitnesses associated with the sites they 

are visiting. Searches in the neighbourhood of the best sites which represent more promising solutions 

are further more detailed by recruiting more bees to follow them than other selected bees. 
 

 

Randomly assigned and termination 

Assigning the remaining bees in the population randomly around the search space scouting for new 

potential solutions. These steps are repeated until a stopping criteria is met. The stopping criteria are 

either the maximum loop value is met or the fitness function has converged. At the end of each 

iteration, the colony produces two parts to its new population – representatives from each selected 

patch and other scout bees assigned to conduct random searches. 

 

Fig. 2: The flow of BAFBA. 
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Note: Reac represents reaction. 

Fig. 3: Bee representation of metabolic genotype 
 

 
 

Fig. 4: Steps in FBA 

Results and Discussion 

In this paper, S.Cerevisiae is used as the dataset to test on the operation of BAFBA. The results 

obtained are compared to the previous works reported in the literature studies (6,7). Millimole (mmol) 

is the unit of concentration whereas millimoles per hour (mmol/hr) is used as the unit measurement in 

the experiments. 
 

Table 1 and Table 2 summarize the results obtained from BAFBA.  As shown from the results, this 

method has produced better results to the previous works.  In this paper, potential reactions which can 

be removed are identified. 

 

Firstly, BAFBA suggests the removal of five reactions from the network results in succinate growth 

rate reaching 1.7023 which is better than the other two methods. The list of knockout genes obtained 

is to eliminate the competing byproduct (i.e, pyruvate). 

 

Next, BAFBA is applied to identify knockout strategy for producing glycerol. Table 2 shows the best 

result is obtained from this method is 1.7023. From the list of knockout genes, it can be concluded 

that this strategy focuses on inactivating PEP consuming reactions. BAFBA is also applied to produce 

vanillin in this paper. Table 3 shows the result of BAFBA compared with the other methods. The 

removal of three reactions from the network results in vanillin growth rate reaching 1.7023. BAFBA 

produced the best results in all cases, due to the advantage of BA performs local and global search 

simultaneously to avoid being trapped at locally optimal solutions.  BA splits the search into 

exploration and exploitation, which are then executed parallely rather than serially like SA. Thus, BA 

performs better than SA where it solves the local minima problem faced by SA. 
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Table 1: Comparison between different methods for production of Succinate 
Method Growth Rate (mmol/hr) List of knockout genes 

BAFBA 1.7023 (R)-lactate:ferricytochrome-c 2-oxidoreductase, 2-dehydropantoate 2-

reductase, 2-deoxy-D-arabino-heptulosonate 7-phosphate synthetase, 2-keto-

4-methylthiobutyrate transamination, 2-oxobutanoate dehydrogenase 

SA + FBA [7] 0.05398 PGII_I, PGII_2, FBPI, PDC6, ADH4, SDH3_2, AAHI_I, URHI_I, U30_, 

MET3, ALD4_2, GSHI, UI03_, YER053C, CTPI_I 

OptGene [6] 0.39 SDH-complex, ZWF I, PDC6, UI33, U221 

Note: The shaded column represents the best result. 

 

Table 2:  Comparison between different methods for production of Glycerol 
Method Growth Rate (mmol/hr) List of knockout genes 

BAFBA 1.0723 (R)-lactate:ferricytochrome-c 2-oxidoreductase, (R,R)-butanediol 

dehydrogenase, 2-deoxy-D-arabino-heptulosonate 7-phosphate synthetase, 2-

keto-4-methylthiobutyrate transamination, 2-methylcitrate synthase 

OptGene [6] 0.49 FBP1, Glyceraldehyde-3-phosphate dehydrogenase 

Note: The shaded column represents the best result. 

 

Table 3: Comparison between different methods for production of Vanillin 
Note: The shaded column represents the best result. 

 

In addition, Table 4, Table 5 and Table 6 show the results of three of the identified gene knockout 

strategies for succinate, glycerol and vanillin overproduction. 

 

Table 4 shows three of the identified gene knockout strategies (i.e., mutants A, B, and C). For the 

production of succinate, (R)-lactate:ferricytochrome-c 2-oxidoreductase which contributes to the 

phosphotransferase system for all three mutant A, B, and C is disabled, this causes the network to rely 

exclusively on glucokinase for glucose uptake. 

 

Table 4: Result of different knockout strategies for production of Succinate 
Mutants Growth Rate (mmol/hr) List of knockout genes 

A 5.7285e-013 (R)-lactate:ferricytochrome-c 2-oxidoreductase, 2,5-diamino-6-ribitylamino-4(3H)-

pyrimidinone 5'-phosphate deamin, 2-aceto-2-hydroxybutanoate synthase 

B 0.57285 (R)-lactate:ferricytochrome-c 2-oxidoreductase, (S)-lactate:ferricytochrome-c 2-

oxidoreductase, 2-aceto-2-hydroxybutanoate synthase, 2-dehydropantoate 2-

reductase 

C 1.7023 (R)-lactate:ferricytochrome-c 2-oxidoreductase, 2-dehydropantoate 2-reductase, 2-

deoxy-D-arabino-heptulosonate 7-phosphate synthetase, 2-keto-4-

methylthiobutyrate transamination, 2-oxobutanoate dehydrogenase 

 

Table 5: Result of different knockout strategies for production of Glycerol 
Mutants Growth Rate (mmol/hr) List of knockout genes 

D 4.8295e-013 (R)-lactate:ferricytochrome-c 2-oxidoreductase, 2-aceto-2-hydroxybutanoate 

synthase, 2-dehydropantoate 2-reductase 

E 5.4019e-013 (S)-lactate:ferricytochrome-c 2-oxidoreductase, 2-aceto-2-hydroxybutanoate 

synthase, 2-dehydropantoate 2-reductase, 2-deoxy-D-arabino-heptulosonate 7-

phosphate synthetase 

F 1.0723 (R)-lactate:ferricytochrome-c 2-oxidoreductase, (R,R)-butanediol dehydrogenase, 

2-deoxy-D-arabino-heptulosonate 7-phosphate synthetase, 2-keto-4-

methylthiobutyrate transamination, 2-methylcitrate synthase 

 

 

 

 

 

 

 

Method Growth Rate (mmol/hr) List of knockout genes 

BAFBA 1.7023 (S)-lactate:ferricytochrome-c 2-oxidoreductase, 1-phosphatidylinositol-3-

phosphate 5-kinase, 2-deoxy-D-arabino-heptulosonate 7-phosphate synthetase 

OptGene [6] 0.57 Pyruvate decarboxylase, Glutamate dehydrogenase 
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Table 6 Comparison between different methods for production of Vanillin 

 

Table 5 shows the result of different knockout strategies for the production of glycerol, 

phosphotransferase system for all three mutant D, E and F are disabled. Lastly, Table 6 shows the 

different knockout strategies obtained by BAFBA in producing vanillin, for mutant G and H, (S)-

lactate:ferricytochrome-c 2-oxidoreductase which contributes to the phosphotransferase system is 

disabled, this causes the network to rely exclusively on glucokinase for glucose uptake. For mutant I, 

deletion of 1-pyrroline-5-carboxylate dehydrogenase which belongs to the family of oxidoreductases, 

results in an increased availability of NADPH needed for vanillin biosynthesis. In conclusion, the 

phosphotransferase system affect greatly to the production of succinate, glycerol and vanillin. 

Conclusion and Future Works.  

 

BAFBA is proposed to predict optimal sets of gene deletion in order to maximize the production of 

certain metabolite in this paper.  This method is based on BA, where the local minima problem faced 

by SA is worked out as BA is capable of performing local and global search simultaneously. The FBA 

approach is used as a fitness function whereby it is based on a steady state approximation to 

concentrations of the internal metabolites, which reduces the corresponding mass balances to a set of 

linear homogeneous equations. 

 

Experimental results on S.Cerevisiae model dataset obtained from literature [6] showed that BAFBA 

is a useful tool in Metabolic Engineering as it is effective in generating optimal solutions to the gene 

knockout prediction. 

 

The performance of BAFBA can be further improved by applying an automated pre-processing 

operation in BAFBA to simplify the genome-scale metabolic model. The development of multi-

objective optimization algorithms in a single run to achieve two goals, for example, maximizing the 

biomass and the desired product, is another interesting feature which can be implemented in the 

standard BAFBA.  Lastly, as BA employs many tunable parameters which are difficult for the user to 

select, it is important to find ways to help the user choose appropriate parameters, for example, 

parameter tuning. 
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