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1 Computational Complexity

1.1 Popular classes of computational complexity

1. Constant time O(1)

2. Linear time: O(n)

3. Quadratic time: O(n2)

4. Cubic time: O(n3)

5. Polynomial time P: 2O(logn)

6. Exponential time E: 2O(n) or 2poly(n)

7. Logarithmic time: O(logn)

1.2 SVC-algorithms

The optimization problem of SVM- algorithms is a quadratic programming with
linear equality and inequality constraints and a positive definite matrix. In gen-
eral the ellipsoid method solves such quadratic optimization problem in poly-
nomial time.

By exploiting some special features of SVC algorithms, the complexity can be
reduced enormously. For example, Platt SMO algorithms have complexity be-
tween O(N) and O(N2) where N is number of instances.

According to svmtutorial of Burges () the worst case computational complexity
is O(N3

sv) (inversion of the Hessian) where Nsv is number of support vectors.
Let denote: Nsv number of support vectors, d - number of features and N -
number of instances, the complexity of SVM is O(N3

sv + (N2
svn+NsvNd).

1.3 Decision Trees

O(Nd2) where N -number of instances, d - number of features.
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1.4 KNN Algorithm

K-nn search for k nearest neighbors of the new instances. The simplest (naive)
solution: O(Nd) where N is number of instances and d is number of features.
For a better approach, the complexity can be reduced to O(logN) (branch and
bound algorithm.

1.5 Logistic Regression Algorithm

1.6 FisherLinearDiscriminant

The optimization problem is a regular eigenvalue problem for a symmetric pos-
itive definite matrix which has the computational complexity of O(N3) where
N is size of the matrix or number of instances.

1.7 Naive Bayes Algorithm

O(Nd)

2 Complexity of Hypothesis space

2.1 Complexity measurement

One simple measure of the complexity of hypothesis space is its cardinality.
However this measure can be used for only finite hypothesis space. For infinite
hypothesis space we can use the VC dimension which is defined as following:
V C(H) of hypothesis space H defined over instance space X is the size of the
largest finite subset of X shattered by H. If arbitrarily large finite sets of X
can be shattered by H, the V C(H) will be ∞.

VC dimension of class of linear learning machine over Rd is d+ 1.

For any finite H, V C(H) ≤ log2(H).

Rademacher complexity: measures richness of a class of real-valued functions
with respect to a probability distribution.

2.2 SVC-algorithms

Hypothesis space: linear hyperplanes.

There is a connection between the margin and the VC-dimension (Vapnik).
The lemma states that the VC-dimension is lower the larger the margin. That’s
why support vector machines implement structural risk minimization.

According to svmtutorial of Burges (Burges, ): Let K be a positive kernel
which corresponds to a minimal embedding space H. Then the VC dimension
of the corresponding support vector machine (where the parameter C is allowed
to take all values) is dim(H) +∞.
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For polynomial kernel (x1.x2)p: DV C = Cd+p−1
p + 1.

From Vapnik: VC dimension of Hγ - set of linear classifier in RD with mar-
gin γ on samples X , is bounded by

V C(Hγ) ≤ min{D, [ 4R
2

γ2
]}

where ‖xi‖ ≤ R,∀i

2.3 Decision Trees

Hypothesis space: orthogonal space partitioning.

For a ’standard’ Decision trees, the cardinality of the hypothesis space is cΠd
i=1(fi+

1) where d-number of features, and each feature has fi discrete values, i = 1..d,
c- number of classes.

2.4 KNN Algorithm

Hypothesis space: any nonlinear functions.

Given a fixed training set, the Voronoi diagram which determines the k nearest
neighbor is also fixed. The hypothesis space of 1-nn is O(N) where N is number
of instances. The VC dimension of 1-nn is also N .

2.5 FisherLinearDiscriminant

Hypothesis space: linear hyperplanes.

VC dimension: at last d+ 1 where N is number of features.

2.6 Logistic Regression Algorithm

2.7 Naive Bayes Algorithm

3 Sample complexity

3.1 Definition (Mitchell, 1997)

In the context of PAC framework, the sample complexity of the learning prob-
lem is the number of training instances required to achieve a level of accuracy.

The number of training instances required to assure that any consistent hy-
pothesis will be probably (with probability (1− δ) approximately (within error
ε) correct when learning any target concepts in H is:

n ≥ 1
ε

(ln|H|+ ln(1/δ))

.
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Consider any concept class C such that V C(C) ≥ 2, any learner L and any
0 < ε < 1

8 , and 0 < δ < 1
100 . Then there exists a distribution D and target

concept in C such that if L observes fewer instances than

max[
1
ε
log(1/δ),

V C(C)− 1
32ε

]

then with probability at least δ, L outputs a hypothesis h having errorD > ε

3.2 SVC-algorithms

n ≥ max[
1
ε
log(1/δ),

V C(SV C)− 1
32ε

]

3.3 Decision Trees

n ≥ 1
ε

(ln|H|+ ln(1/delta))

where |H| = cΠd
i=1(fi + 1) and d-number of features, and each feature has fi

discrete values, i = 1..d, c- number of classes.

3.4 KNN Algorithm

3.5 Logistic Regression Algorithm

3.6 FisherLinearDiscriminant

3.7 Naive Bayes Algorithm
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