
COMAD User Manual
Version 2.0

April 19, 2010

COMAD User Manual.. 1
1. Introduction to COMAD... 3
2. Installing and Running COMAD.. 5
3. Build Your First COMAD Workflow... 7

3.1. Step1. Open a blank workflow and choose the COMAD director 8
3.2. Step2. Add CollectionComposer actor.. 9
3.3. Step3. Add StatisticCalculator actor... 10
3.4. Step4. Add CollectionDisplay actor.. 11
3.5. Step5. Run the workflow ... 12

4. COMAD Data Stream Composition ... 12
5. COMAD Actor.. 16

5.1. Basic COMAD Actor Composition ... 16
5.2. Input and Output Binding Configuration.. 17

5.2.1. Signature ... 17
5.2.2. Read scope .. 19
5.2.3. Input port data binding ... 20
5.2.4. Output port data binding .. 24

5.3. COMAD Actor Classification ... 27
5.3.1. AtomicCoactor .. 27
5.3.2. CompositeCoactor .. 30
5.3.3. Extended AtomicCoactor .. 33

5.4. Provenance Recording.. 34
6. COMAD Path Expression Syntax... 37

6.1. Path Element ... 38
6.2. Qualifier .. 39
6.3. Cardinality .. 42
6.4. Decoration .. 43

6.4.1. Life management ... 43
6.4.1.1. Creation... 43
6.4.1.2. Deletion... 46

6.4.2. Exact type match ... 47
6.4.3. Split of structural type... 48

6.5. Port Reference .. 49
7. Type System.. 51

7.1. Type Category ... 51
7.1.1. System Built-in Type ... 51
7.1.2. User-Defined Type .. 55

7.2. Type Compatibility and Data Format conversion .. 57
8. Demo... 60

8.1. Comet .. 60
8.2. PICalculation .. 63

8.3. MobyService.. 63
9. Appendix: Actor Reference .. 64

9.1. CollectionComposer ... 65
9.2. CollectionReader .. 65
9.3. CreateRootCollection ... 65
9.4. CollectionDisplay ... 65
9.5. XmlDisplay.. 66
9.6. TraceWriter... 66
9.7. StartLoop... 67
9.8. EndLoop .. 67
9.9. Filter ... 67
9.10. CompositeCoactor .. 68

1. Introduction to COMAD
Usually the scientific data is in hierarchical structure with collection or nested collection
of data. For example, the meteorological data collected from multiple stations is
organized in multiple levels of collections based on the geographical locations, including
station, country or state etc. Different kinds of analysis is made by summarizing or
comparing different levels of the data to study the way in which multiple environmental
factors, including climate variability, affect major ecosystems.

In the workflow of such scientific system, besides the necessary data analysis logic, a lot
of shim units must be included to assemble/disassemble the data collections, convert the
data into expected format for each analysis and keep the association between the input
and generated data. Such none functional while necessary data processing not only makes
it hard to model the workflow, but also make it hard to understand the workflow,
especially to the scientists, since the main analysis pipeline is totally hidden inside the
large amount of none functional processing units. Moreover, such workflow is also not
easy to be maintained or evolve.

COMAD (Collection-Oriented Modeling and Design) is proposed to support design,
modeling and execution of the scientific application with the collection-oriented data. In
COMAD, such data is flattened from a tree-structure into a stream without any loss of
information. The stream consists of multiple tokens. Besides the token representing the
concrete data value, there’re special delimiter tokens to denote the start and end of the
collection. In this way, the original tree structure of the data is still kept. Each processing
unit in the workflow is called actor. The data stream flows through the whole workflow
from one actor to another. As the workers besides the assembly line, the actors in the
COMAD workflow pick up the data they’re interested from the stream, process it and put
the output back to the stream. A COMAD path denoting expression is used to declare
where to pick up and output the data in the stream.

COMAD brings the following benefits to the workflow modeling and execution.

Clear view to the original scientific data analysis process:
The actor in COMAD doesn’t need to deal with the assembly/disassembly of the data
collection anymore since all the collections are already disassembled when the data is
flattened into the COMAD token stream. Once it’s declared where to pick up and output
the data in the stream, the system will automatically grab the data from the stream, feed
the data into the actor after necessary type check and conversion, and finally write the
data output by the actor into the target location of the data stream. Such easy-handling of
the structured data and automatic data massaging behavior removes a bunch of shim units
from the workflow and make the workflow very neat. Usually, the COMAD workflow is
linear. It presents a very clear view to the original scientific data analysis process. It’s
easy to be modeled and understood, especially by the scientists.

Easy actor development:

http://en.wikipedia.org/wiki/Climate_variability
http://en.wikipedia.org/wiki/Ecosystem

The COMAD actor developer can focus on the data processing logic while leave all the
other work, like input data grabbing, output data writing, buffering, validation and
conversion etc., to the system. All the data processing logic is implemented in one
method which will be invoked by the system with the prepared input data. The result of
the data processing will be returned and then how to write it back to the stream will be
handled by the system. Meanwhile, simplicity is also very good for the reliability of the
actor development.

High reusability and adaptability of the actor:
COAMD actor is very easy to be reused to assemble different workflow. During the actor
development phase, the signature is defined to declare what kind of type is expected for
each input and output data port. And then during the workflow assembly phase, the
concrete data for each port is specified through the data binding by using the COMAD
path expression. Signature makes it easy to know how to use the actor correctly. And the
data processing logic inside the actor only deal with the structure-independent data. By
changing the data binding to adapt to the data stream with different structure, the actor is
easy to be reused to assemble different workflow. The high reusability and adaptability of
the COMAD actor meet the evolve requirement of the scientific workflow with
exploiting feature. For scientific application, change is normal.

Improved performance due to the streaming mode:
In the COMAD workflow, data is re-structured into a stream flowing through each actor.
Therefore the workflow performance is improved since multiple actors could work on
different part of the data stream at the same time.

Great support for provenance:
To trace back how each data comes from, the provenance information, including each
insertion and deletion operation, is recorded in the data stream. (In COMAD, once the
data item is created, it’s not allowed to be modified. So there’s only deletion and
insertion instead of modification operation.) By using the tool of “Provenance Browser”,
the provenance information could be easily browsed and queried.

Potential powerful workflow management ability:
By analyzing the input data structure and each actor’s COMAD path expression about
how to bind the input and output data with the data stream, it's possible to know how the
data stream is changed by each actor, how the actor depends on each other, when the
input data is ready and then the actor is fired. Such information is very valuable to the
workflow system management. It could be used to test the correctness of the workflow
configuration before the workflow execution. For example, it’s easy to find out whether
there’s an actor never be fired due to the wrong data binding expression. It’s also possible
to change the configuration of the workflow during the workflow executing phase for
some important management purpose, like fault tolerance or load balance etc.
COMAD is built on top of Kepler workflow system. Actually it’s a special computation
model of Kepler. For more details about Kepler, please refer to the https://kepler-
project.org/.

https://kepler-project.org/
https://kepler-project.org/

2. Installing and Running COMAD
The COMAD system could be installed through the module manager of Kepler or from
the svn repository. The module manager is mostly suggested since it provides a
convenient way to install and run different suite of Kepler.

To install COMAD system from module manager, firstly you need to install and run the
Kepler system and then do the following steps:

1. select the Tools menu of kepler and then select the module manager in the drop
down menu to open the module manager as showed in Figure 1.

Figure 1. Opened Module Manager Window in Kepler

2. In the module manager, select the “Available Modules” tab.
3. Choose the comad-exp suite from the available suites, click the right arrow and

then this suite appears in the “Selected Modules”.

Figure2. Select comad-exp Suite for Install

4. click the “Apply and Restart” button in the lower right corner. The original

opened kepler window will be closed and a new window will be opened
automatically. The comad-exp is installed successfully now. If the kepler is
installed at <install_dir>, then the <comad-exp_install_dir> is
<install_dir>/comad-exp-1.0.0

To install the COMAD system from the svn repository, you need do the following steps:

1. build up required environment
a. install JDK1.5 or higher version
b. install Ant 1.7.1 or higher version
c. install SVN client 1.5 or higher version

2. download the build system with the following commands:
mkdir <install_dir>
cd <install_dir >
svn co https://code.kepler-project.org/code/kepler/trunk/modules/build-area
cd build-area

3. retrieve COMAD module with the following commands
ant change-to –Dsuite= comad-exp

4. Start COMAD module with the following commands. The <comad-
exp_install_dir> is <install_dir>/comad-exp.

cd <comad-exp_install_dir>
ant run

Until now, the Kepler workflow system should be started and you should see its GUI like
this:

Figure3. Kepler Workflow System GUI

To run the COMAD workflow, like the workflow making statistics of geographical data,
you need do the following steps:

1. Go to the “File” menu in toolbar of the GUI and select the “Open File” item.
2. In the popup file browser, go to the COMAD simple demo workflow directory

which locates at <comad-exp_install_dir>/workflow/demo/Simple/, and select the
Statistic.xml to open the Statistic workflow.

Figure4. The open COMAD Statistic workflow

3. Click “Run” button (the big green triangle) from the toolbar to run the Statistic

workflow. Once the execution is successfully finished, a text display window will
pop up to show the execution trace.

Figure5. The execution trace of the Statistic workflow

3. Build Your First COMAD Workflow
Before we go to any technical details of the COMAD workflow system, let’s build up
your first simple COMAD workflow: Statistic workflow.

The Statistic workflow receives the geographical data collected from multiple stations
and makes simple statistics analysis. It’s composed by three actors:

 CollectionComposer: As the source of the workflow, this actor gets the external
input data and converts it into the inner COMAD data stream.

 StatisticCalculator: This actor make static analysis based on the data grabbed
from the data stream and puts the statistic result back into the data stream.

 CollectionDisplay: This actor shows how the final data stream looks like.

The complete Statistic workflow could be viewed and executed at “<comad-exp_install_d
ir>/workflow/demo/Simple/Statistic.xml”. The source code for the involved actor could b
e found under the directory “<comad-exp_install_dir>/src/org/kepler/demo/simple”.

3.1. Step1. Open a blank workflow and choose the COMAD director
Go to the File menu in the toolbar and navigate to the New Workflow -> blank menu, or
simple type Ctrl+N to open a blank workflow.

Besides the actors implementing specific processing logic, each Kepler workflow must
have a director to decide how the constituted actors communicate and cooperate during
the workflow execution, just as the movie director. For the COMAD workflow, its
director is ComadDirector. To add ComadDirector into the workflow:

1. Go to tool menu and click the “Instantiate Attribute” item to open the “Instantiate
Attribute” window.

2. In the text field for the “class name”, type “org.kepler.domains.ComadDirector”
and click “ok”.

The empty COMAD workflow looks like:

Figure 6. Empty COMAD workflow

3.2. Step2. Add CollectionComposer actor
1. Create CollectionComposer actor:

1) Go to tool menu and click the “Instantiate Component” item to open the
“Instantiate Component” window.

2) In the text field for the “class name”, type
“org.kepler.coactors.CollectionComposer” and click “ok”.

2. Configure the CollectionComposer with the input data by double clicking its icon.
And click the “Commit” button when the configuration is finished. Two things
need to be configured for the input:

1) Input schema: choose “Native Comad” as the input format
2) Input value: paste the following text as the input value. It’s the humidity

data collected from stations “s2” and “s5”. For each data collection point,
it contains the timestamp and the humidity data at that time.

<Annotation key="start_time">"01-01-2008"</Annotation>
<Annotation key="end_time">"01-01-2009"</Annotation>
<Collection label="HumidityDataCollection">
 <Annotation key="station_number">"s2"</Annotation>
 <Collection label="station">
 <Collection label="CollectionPoint">
 <Data label="timestamps">1.196499599E9</Data>
 <Data label="humidity">29.700001</Data>
 </Collection>
 <Collection label="CollectionPoint">
 <Data label="timestamps">1.196503199E9</Data>
 <Data label="humidity">28.799999</Data>
 </Collection>
 <Collection label="CollectionPoint">
 <Data label="timestamps">1.196510399E9</Data>
 <Data label="humidity">29.200001</Data>
 </Collection>
 </Collection>
 <Annotation key="station_number">"s5"</Annotation>
 <Collection label="station">
 <Collection label="CollectionPoint">
 <Data label="timestamps">1.196499599E9</Data>
 <Data label="humidity">36.799999</Data>
 </Collection>
 </Collection>
</Collection>

Figure7. Input data of the Statistic workflow

The configuration of CollectionComposer looks like:

Figure8. CollectionComposer Configuration

For more information about input collection and input data format supported by COMAD,
please refer to the chapter of “COMAD Data Stream Composition”.

3.3. Step3. Add StatisticCalculator actor
To implement specific function, we could choose to develop a composite actor by
encapsulating a sub-workflow assembled from a group of existing actors. Or we could
choose to develop an atomic actor from scratch, which is more flexible. For simplicity,
we use the atomic actor in the Statistic workflow. You may check the
Statistic_Composite workflow to see how the same function is implemented by using the
composite actor. It’s under the same directory as the completed Statistic workflow.

1. Create the StatisticCalculator actor in the similar way as we create the
CollectionComposer actor by typing “org.kepler.demo.simple.StatisticCalculator”
for the class name.

2. Connect the StatisticCalculator with the CollectionComposer by dragging a line
between the input port of StatisticCalculator and the output port of
CollectionComposer.

3. Configure the input and output of StatisticCalculator in the configuration window
by double clicking its icon. There’re six parameters:
 Signature: This parameter is set by the actor developer to define the input and

output of this actor, including port name, expected type and cardinality. This
actor reads a list of DoubleToken from valueList port, and output statistic
result DoubleToken from the avg, max and min port separately. The setting of
the data binding must be consistent with the Signature requirement.

 ReadScope: This parameter defines the visible range of the data stream to the
actor to grab the input data or write the output data. To process data for each
station, put “/HumidityDataCollection/station” here.

 valueList: This parameter defines how to pick up the input data from the data
stream for the valueList port. To give the humidity data from all collecting
point of a station in a list to the actor as required by the signature, put
“//DoubleToken[@label=="humidity"]+” here.

 avg: This parameter defines how to write the output data from port avg to the
data stream. Put “/DoubleToken[@label=="average"]” here to write the data
labeled as “average” in the analyzed station collection.

 max: This parameter defines how to write the output data from port max to the
data stream. Put “/DoubleToken[@label=="max"]” here to write the data
labeled as “max” in the analyzed station collection.

 min: This parameter defines how to write the output data from port min to the
data stream. Put “/DoubleToken[@label=="min"]” here to write the data
labeled as “min” in the analyzed station collection.

The configuration of the StatisticCalculator actor looks like:

Figure9. StatisticCalculator Configuration

For more information about how the COMAD actor is configured and how they work,
please refer to the chapter of “COMAD Actor”. For more information about how the
syntax of signature, read scope and data binding, please refer to the chapter of “COMAD
Path Expression Syntax”.

3.4. Step4. Add CollectionDisplay actor
To show the final result and the provenance of the workflow, the CollectionDisplay actor
is added.

1. Create CollectionDisplay actor in the similar way to create the other actor by
typing “org.kepler.coactors.CollectionDisplay” for the class name.

2. Connect the StatisticCalculator with the CollectionDisplay by dragging a line
between the input port of CollectionDisplay and the output port of
StatisticCalculator.

3. Configure the CollectionDisplay actor by double clicking its icon. The
CollectionDisplay is a special actor without data binding. It simply shows the
content of the data stream inside the read scope. Put “/” here to show the whole
data stream. “/” represents the root collection which also equals to
“/HumidityDataCollection”.

The configuration of CollectionDisplay actor looks like:

Figure10. CollectionDisplay Configuration

3.5. Step5. Run the workflow
The completed Statistic workflow is demonstrated in Figure 4. To run the workflow,
click the big green triangle in the tool bar and then the final execution data stream got
from the workflow is showed in the pop up text window as Figure 5 demonstrated. The
data stream not only contains the input and output data, but also records the execution
provenance information, including what actors and configurations are in the workflow
and how the data stream is changed by each actor with insertion or deletion operation.

4. COMAD Data Stream Composition
Logically the COMAD data stream consists of three kinds of entities: collection, data and
annotation. The structure of COMAD data stream is a tree, similar to XML.

 Collection: The collection is a container of a group of data. A collection could
also be contained by another collection. The top collection corresponds to the
whole data stream is called root collection. Each collection has an attribute of
label and any number of annotations as needed. The label is optional. But we
strongly suggest assigning a label for each collection. Therefore some advanced
features could be used, like static analysis.

 Data: The data represents the concrete data value. Each data has attributes of
label and type. It can also have any number of annotations as needed. Both label
and type are optional. When type is absent, it will be inferred from the data value

automatically. COMAD support multiple type by default as well as user defined
type. Please refer to the chapter of “Type System” for details.

 Annotation: The annotation is used to tag the collection or data to denote it has
specific property. The annotation just appears before the target collection or data
it annotates. Some annotations are used to annotate the root collection with the
workflow system configuration information, including what actors and
parameters are used. They’re called run annotations and they’re annotated by the
system automatically. In spite of this kind of annotation, the user can use the
normal annotation or a kind of special annotation, called metadata annotation, to
annotate the collection or data. The only difference between these two is the
metadata annotation is disallowed to be deleted. The normal annotation and
metadata annotation have attributes of key and type. The newly added annotation
will result in deletion of the previously existing annotation with the same key.
The annotation is inheritable. That means all the collection or data inside one
collection will inherit its annotation. The annotation with the same key as the
inherited annotation will overwrite it.

The external input data of COMAD workflow could be in two formats:

 Native COMAD format: It’s a XML format with special schema. The data in this
format is directly organized in the COMAD logical data structure, with elements
of Collection, Data and Annotation.

o The geographical input data of the Statistic workflow in Figure 7 is in this
format. The “start_time” and “end_time” annotations of the root collection
“HumidityCollection” tags that the data is collected between 01-01-2008
and 01-01-2009. Inside the root collection, there’re two “station”
collections enclosing data from “s2” and “s5” stations separately. Each
“station” collection has a “station_number” annotation to tag which station
it represents and multiple “CollectionPoint” collections containing
timestamp and the humidity data. The logical structure of this input is
demonstrated in Figure 11. For simplicity, three CollectionPoint
collections of station s2 are not fully expanded, which has the similar
structure as the CollectonPoint collection of station s5.

HumidityDataCollection

stationstart_time

01-01-2008

end_time

01-01-2009

station

CollectionPoint

timestamps

1.196499599E9

humidity

36.799999

station_number

s5

station_number

s2

CollectionPoint
CollectionPoint

CollectionPoint

Collection

Annotation

Data

Figure11. Logical Structure of Statistic Workflow Input

 General XML format: The input data could be in any valid XML format. Inside

the system, the general XML format is mapped to the native COMAD format with
the following rules.

o Element node
 If the node has multiple child node, it’s mapped to the COMAD

Collection while its name is mapped to the label of the Collection.
 If the node only has one Text node or CData node, it’s mapped to

the COMAD Data while its name is mapped to the label of the
Data and value of the Text or CDadta node is mapped to the Data
value. The difference between Text and CData mapping is, the
CData is mapped to a Data with type of StringToken while the
Text is mapped to a Data whose type is inferred from its value
automatically.

o Attribute is mapped to the annotation.
o Text node or CData node inside an Element node together with the other

nodes is mapped to the COMAD Data without label.
The input in general XML format equal to the input in native COMAD format in Figure 7
 is demonstrated in the following. The Statistic workflow with such input format could be
 found in the “<comad-exp_install_dir>/workflow/demo/Simple/Statistic_XmlInputForm
at.xml”:

<HumidityDataCollection start_time="01-01-2008" end_time="01-01-2009">
 <station station_number="s2">
 <CollectionPoint>
 <timestamps>1.196499599E9</timestamps>
 <humidity>29.700001</humidity>
 </CollectionPoint>
 <CollectionPoint>
 <timestamps>1.196503199E9</timestamps>
 <humidity>28.799999</humidity>

 </CollectionPoint>
 <CollectionPoint>
 <timestamps>1.196510399E9</timestamps>
 <humidity>29.200001</humidity>
 </CollectionPoint>
 </station>
 <station station_number="s5">
 <CollectionPoint>
 <timestamps>1.196499599E9</timestamps>
 <humidity>36.799999</humidity>
 </CollectionPoint>
 </station>
</HumidityDataCollection>

Figure12. Input in general XML format

During the workflow execution phase, all the information is mapped into a token stream,
including all the logical entities of data and the recorded provenance information etc. The
expert user who are familiar with the data stream composition, related data structure and
processing mechanism, are provided with a group of API to access each token in the data
stream. Therefore any fancy data processing function could be implemented. For more
details, please refer to “Exteneded AtomicCoactor” chapter. The category of COMAD
token is summarized in Table 1. Each token contains provenance about how it’s inserted.

Table1. COMAD Token Classification.
 Token Name Description
OpeningDelimiterToken denote the start of a collection
ClosingDelimiterToken denote the end of a collection
DataToken represent the entity of data
AnnotationToken represent the entity of annotation
ActorRegistrationToken a special AnnotationToken recording what

actor is involved in the workflow
ParameterToken a special AnnotationToken representing

parameter, like parameter of actor
MetadataToken a special AnnotationToken which is not

allowed to be deleted once it’s created
ExceptionToken enclose the exception happened during

workflow execution
LoopTerminationToken denote the end of loop. This token together

with StartLoop and EndLoop actors are
used to implement loop structure in
COMAD. Please refer to PI_Calculation
workflow in demo.

DeletionRecordToken enclose provenance information about how
the collection, data or annotation is deleted

InvocationDependencyToken enclose provenance information about how
invocations of actors depend on each other

For example, the sub-tree representing “s5” collection of Statistic workflow in Figure 11
is mapped into the following token stream:

station_number
s5

stationstation CollectionPoint
timestamps

1.196499599E9
humidity

36.799999
CollectionPoint

CollectionPoint Collection

Station Collection

DataTokenAnnotationToken

token stream flow direction

ClosingDelimiterTokenOpeingDelimiterToken

Figure13. Token stream mapped from s5 collection

5. COMAD Actor
Actor is the basic building block of the workflow. As a worker besides the assembly line,
the COMAD actor of workflow sits on the data processing pipeline, picks up the
interested data, processes it and puts the result back into the data stream.

5.1. Basic COMAD Actor Composition
A COMAD actor comprises two parts:

 Data processing logic: It defines how the actor processes the input data and
produces the output. The COMAD actor could be implemented from scratch by
inheriting specific actor and overwriting specific methods to implement the data
processing logic. The actor can also be implemented as a CompositeCoactor to
encapsulate a sub-workflow composed by a group of existing actors.

 Parameter: The actor is customized through the parameter. There’re two kinds of
parameters.

o Functional parameter: It’s used to customize the function of actor. For
example, the actor generating multiple time windows has an interval
parameter which defines the interval for each window.

o Input and output binding configuration parameter: It defines how to grab
the input data from the data stream and write the output data into the data
stream. Three parameters belong to this category: read scope, signature,
input and output port data binding.

The duty of the actor developer is:

 Implement the data processing logic
 Define the functional parameter if it exist
 Define the signature parameter to declare what data is expected to be input and

output just as the signature of the function in the programming language.

The duty of the workflow assembler to use the actor is:

 Configure the functional parameter as needed if it exists
 Configure the parameter of read scope, input and output port data binding to bind

the input and output port of the actor to the concrete data stream.

The actor is easily developed since the actor developer only needs to focus on the data
processing logic. Meanwhile, the actor is easily reused since the expected input and
output is clearly declared through the signature and the changing of binding configuration
parameters make the actor easily adapt to the different data stream in different workflow.

In the rear of this chapter, the input and output binding configuration parameters are
introduced firstly. Then it’s explained how the actor is fired in case of different input data
bindings. Finally the classification of the COMAD actor and its major APIs are
elaborated.

5.2. Input and Output Binding Configuration
The signature, read scope, input and output data binding are defined through the
COMAD path expression. Please refer to the chapter of “COMAD path expression
syntax” for more details.

5.2.1. Signature
Signature is defined by the actor developer to declare the requirement on the input port
and the expected data on the output port. The input and output port data binding defined
by the workflow assembler must be consistent with the signature.

For each port, signature defines the expected type and cardinality. The type could be any
system built-in type, like StringToken, IntegerToken etc. It can also be user defined type.
There’re four choices of cardinality: one; ? (zero or one); + (one or more) and * (zero or
more). Since ? and * could be zero, they have optional meaning while one and + have
none optional meaning. For example, the signature of input port valueList in
SatisticCalculator actor is “DoubleToken+”. It means that valueList port is a none
optional port and in each firing it must provides a none empty list of DoubleToken as
input.

The signature of actor is composed by the signature element of all input and output ports.
Each signature element comprises port name and signature definition separated by
semicolon. The input signature elements are separated from the output ones by arrow
which indicates the direction from the input to the output. Multiple input or output
signature elements are separated by comma. For example, the signature of
SatisticCalculator actor is defined in figure 12. It declares that the actor receives a list of
DoubleToken and outputs statistic value of one average, min and max in type of
DoubleToken.

valueList:DoubleToken+
->
avg:DoubleToken,
max:DoubleToken,
min:DoubleToken

Figure14. Signature of StatisticCalculator Actor

Both input and output port data binding must be consistent to the corresponding signature.
The consistency between the input port data binding and signature guarantee the actor get
what it needs when it’s fired. The consistency between the output data binding and
signature guarantee the output of actor is the data expected to be written into the data
stream. If there’s any inconsistency, an exception is thrown out. The consistency test
includes cardinality consistency test and type consistency test, as illustrated in table 2 and
table 3 separately. The type of signature, input and output port data binding is actually
decided together by the declared type and cardinality. The type declared in signature or
data binding is denoted as basic-type while the type of signature or data binding is
denoted as signature-type or binding-type. For data binding like “/DoubleToken+”, the
basic-type is DoubleToken while the binding-type is List<DoubleToken>.

Table2. Cardinality Consistency Test
Data Binding Port

Category Cardinality
Signature

Cardinality
Consistent

? or * One or + No.
It’s inconsistent because there might be no
input data at this port when the actor is fired
but the actor expects at least one input data.

Input Port

One or + ? or * Yes.
One or + ? or * No.

It’s inconsistent because there might be no
output data at this port after the actor is fired
but the binding expects at least one output
data.

Output Port

? or * One or + Yes.

Table3. Type Consistency Test
Data Binding Port Category Type Relations Consistent

binding-type ≤ signature-type*3 Yes. Input Port*1

! binding-type ≤ signature-type No.
signature-type ≤ binding-type Yes. Output Port*2

! signature-type ≤ binding-type No.
*1: Binding-type of input port, is the type of data prepared by this port to fire actor.
*2: Binding-type of output port, is the type of output data expected to be written into data
stream by this port after actor is fired.
*3: “≤” means the right side type is compatible to the left side type. One type is
compatible to another if the first type is allowed to be converted to the second one.

Sometimes, the type of input port data binding is not clear and fixed due to the complex
selecting condition used in path expression. In this case, the type consistency test
between input port data binding and signature is actually done by testing the consistency
between the real bound input data and the signature. Such problem doesn’t exist for the
output port data binding since the type for the newly created value is clearly declared in
the output port data binding path expression.

Besides consistency between data binding and signature, the real output data must also be
consistent to signature. They’re consistent as long as the type of the output data is
compatible to the type of signature.

A pair of data binding and signature with consistent type is possible to have different
format. For example, in COMAD type system, ArrayToken(DoubleToken) (It’s an
ArrayToken with element type of DoubleToken) is consistent to List<DoubleToken>
defined as DoubleToken+. If actor expects to receive a list of DoubleToken, the
ArrayToken data bound through the input port data binding needs to be converted into a
list before it’s fed into the actor. The same thing happens between the output data and
output port data binding. In conclusion, the bound input data or the output data needs to
be converted into the target format defined by the input port signature or the output port
data binding when their formats are different.

All the above consistency test and format conversion is done by COMAD system. Such
automatic input and output data messaging for the actor makes the actor development and
reuse easier. For more details about what type is supported, how the cardinality affects
the type, what’s the compatible relationship between two types, and how the data is
converted between different formats, please refer to the chapter of “Type System”.

5.2.2. Read scope
Read scope defines a collection inside the data stream where input data could be picked
up from and output data could be written into.

Read scope actually defines a segment of data stream visible to the actor. When the data
stream passes through, the actor firstly tries to locate the collection matches to the read
scope. If it fails, the actor does nothing. As long as a collection is matched and read scope
is entered, the actor is invoked to navigate in this collection to find the interested input
data, make processing or write data into this collection. The collection matched to the
read scope is the starting point from where the actor will look for the collection, data or
annotation matched to the data binding path expression, while the data binding path
expression is also declared relative to the read scope. How many times the read scope is
entered, how many times the actor is invoked how many times.

The read scope is not entered in nested way. Once read scope is entered, the collection
inside the read scope collection won’t be treated as read scope anymore even if its path
also matches to the read scope.

The read scope of StatisticCalculator actor in Statistic workflow is defined as
“/HumidityDataCollection/station”. Both s2 and s5 station collection will be matched to
this read scope. The StatisticCalculator will be invoked twice.

stationstart_time

01-01-2008

end_time

01-01-2009

station

CollectionPoint

timestamps

1.196499599E9

humidity

36.799999

station_number

s5

station_number

s2

CollectionPoint
CollectionPoint

CollectionPoint

Invocation 2

HumidityDataCollection Collection Annotation

Data Invocation

Invocation 1

Figure15. Read Scope and Invocation of StatisticCalculator. Although the start_time and
end_time annotations of root collection are not explicitly included in either invocation in the
graph, yet they’re inherited implicitly by each collection and data inside the root collection.
Therefore they are also possible to match the input port data binding expression and fire the actor.

5.2.3. Input port data binding
The input port data binding declares where the input data of this port comes from. It
could come from three places:

 Data stream: The input port data binding denotes to a data or annotation in the
data stream through path expression, like “//DoubleToken”. It’s not an absolute
path to the location where the interested data is in the whole data stream. It’s a
path relative to the read scope.

 Workflow parameter: The input port data binding denotes to an existing
parameter of the workflow, like $interval. The “interval” is a workflow parameter.

 Literal: The input port data binding denotes to a literal using the Ptolemy
expression. For example, the expression of "hello" represents a StringToken data
with value of “hello”. For more details, please refer to the Ptolemy tutorial at
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-28.html.

The input port data binding with const value by referring to workflow parameter or using
literal is called const input port data binding. Otherwise, it’s a none-const input port data
binding. The const value of the const input port data binding is the input data of this port.
Same as the input data picked up from the data stream through the none-const input port
data binding, it must be consistent to the signature. Please refer to the “Signature” chapter
for the consistency test.

Inside read scope collection, whenever a data or annotation arrives, the actor will firstly
test whether it matches to any of the input port data binding and then put it into the buffer
of the matched port. One data or annotation is possible to match to multiple data binding
and put into the multiple buffers. After that, it’s tested whether the input of actor is ready.
Once it’s ready, the actor is fired. Otherwise the actor just waits until the next data or
annotation.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-28.html

Whether the incoming data or annotation is matched or not is not affected by the
cardinality of the input port data binding. The match process is only related to the type
declared in the data binding. For data binding like “/DoubleToken+”, all the data with
type of DoubleToken satisfying all the other path requirement is matched. For input data,
the cardinality of input port data binding only decides how to assemble the matched data
for input and when the actor is ready to be fired, which is illustrated in table 4 and table 5.

Table4. Cardinality and Input Data Assembly
Cardinality Assembled Input Data in Buffer Description
One or ?

Each matched data or annotation is put
singly in one cell*1 to fire actor with
only one input data.

+ or *

The matched data or annotation is
assembled into a list and put into each
cell. The actor will be fired with a list
of input data from this port.

The boundary of such assembly is the
previous matched element just before
the data or annotation in the path
expression. Please refer to the
“COMAD Path Expression Syntax”
chapter for more details.

*1: Each cell of input buffer holds input data of this port for each firing

Table5. Cardinality and Firing Strategy
Input Port Data
Binding and
Cardinality Cases

Firing Times Description

zero input port data
binding

One time Once the read scope is entered
and the actor is invoked, the actor
will be fired one time if there’s no
input port data binding.

Such strategy is useful when the
actor only generate output without
input.

There’s at least one
required binding
port*1.

Port1: ?

Port2: 1

Port3: *

Port4: +

f1f2

null

null

The firing time in each invocation
is the minimum number of
buffered data in all required
binding ports.

Port2 and port4 are required
binding ports. The minimum
number of buffered data for them
is 2. So the actor is fired twice.

In each firing, if no data is
buffered in the corresponding cell
for the optional binding port*2, the
null value is inserted and used as
input of this port.

There’s no required
binding port and
there’s at least one
optional binding port

The firing time is the maximum
number of buffered data
(including null value) in all
optional binding ports.

All three ports are optional. And
the maximum number of buffered
data is 3. So the actor is fired
three times

There’s only one
binding port and it’s a
const binding port

One time The const input port data binding
is treated as a parameter. The
const value of this port could be
used to fire the actor multiple
times as long as the other input is
ready.

When there’s only one const
binding port, the actor is fired
once with its const value.

There’re one const
binding port and at
least one required
binding port

The firing time in each invocation
is the minimum number of
buffered data in all required
binding ports. In each firing, the
const binding port provides its
const value as input.

Same as the second case, the actor
is fired twice. Each time, const
binding port5 provides its const
value c.

There’re one const
binding port and at
least one optional
binding port

The firing time is the maximum
number of buffered data in all
optional binding ports. In each
firing, the const binding port
provides its const value as input.

Same as the third case, the actor is
fired three times. Each time, const
binding port5 provides its const
value c.

*1: Required binding port is none-const input port data binding with cardinality of one or
+.
*2: Optional binding port is none-const input port data binding with cardinality of ? or *.

In Statistic workflow, if read scope of StatisticCalculator actor is root collection and
valueList input port data binding is “/station//DoubleToken[@label=="humidity"]+”, the
actor will be invoked once when the root collection is entered and fired twice with a list
of humidity data from each station.

ReadScope: /
valueList: /station//DoubleToken[@label=="humidity"]+

HumidityDataCollection

station (s2) station (s5)

CollectionPointCollectionPoint CollectionPoint CollectionPoint

Invocation 1

humidity
29.700001

humidity
28.799999

humidity
29.200001

humidity
36.799999

Firing 1Firing 2

{29.700001, 28.799999,29.200001}{36.799999} valueList

Data

Invocation Firing
Collection

Figure16. Invocation and Firing of StatisticCalculator

For none-const input port data binding, the collection, data or annotation matched to the
path expression could be deleted by using special decoration in the path expression. In
this way, the filter functions could be easily implemented. The Statistic workflow that
filters out the collection point with humidity data lower than 29.00 could be found under
“<comad-exp_install_dir>/workflow/demo/Simple/Statistic_filter.xml”. Please refer to
“COMAD Path Expression Syntax” chapter for more details about deletion decoration.

5.2.4. Output port data binding
The output port data binding declares where the output of this port goes into data stream
through a path expression. The last element in the path expression specifies what kind of
data or annotation will be created at the target location defined by the other path elements
using the output value from this port. The path is relative to the read scope. If there’s only
one element in the binding expression, the read scope collection is the target location.
The newly created data goes to the last element of the target collection, while the newly
created annotation goes to the last annotation in the annotation set of the target collection
or data.

For example, “max” output port of the SatisticCalculator actor has binding expression of
“/DoubleToken[@label=="max"]”. The output value of this port is used to create a
DoubleToken data with label of “max” under the read scope collection. If the binding
expression is changed to “/@max[@type=="DoubleToken"]”, then the output is created
as an annotation of the read scope collection. The key of this annotation is max and the
type is DoubleToken.

If the last element of the output data binding path expression denotes to a data without
qualifier, like “/DoubleToken”, then the data is created without label. A newly created
data could be assigned a label with qualifier, like “/DoubleToken[@label=="hi"]”. If the
last element of the path denotes to an annotation without qualifier, like “/@max”, then its

type is assumed to be the same type as declared in the corresponding signature. A
qualifier could be used to explicitly declare the type for newly created annotation, like
“/@max[@type=="DoubleToken"]”.

Output data must be consistent to the output port data binding. Such consistency is
automatically satisfied, since it’s tested that the output data is consistent to signature
while the signature is consistent to output port data binding. If the output data value is
null, it equals empty output. In this case, an exception is thrown out if the cardinality of
the data binding is one or + which expects at least one output data. Except converting the
output data value into the format expected by the output port data binding, like
converting a data with type of ArrayToken(DoubleToken) into a list of DoubleToken, the
output won’t be converted to a value with type as exactly the same as defined by data
binding. For example, an output value with type of “IntegerToken” is consistent to the
data binding defined as “/StringToken”, since IntegerToken is consistent to StringToken
in COMAD type system. But the IntegerToken is written into data stream instead of a
StringToken.

By default the target location for the newly created data or annotation are all collections
or data inside read scope matched to the output port data binding path expression. But
such “write to all matched” strategy is not always useful. Sometimes, the output needs to
be written to specific place related to where the input data comes from. And sometimes a
group of output needs to be written to the same specific place. The port reference could
be used in path expression to satisfy such reference requirement. The output port data
binding may reference any path element of any input port and any other output port. The
reference is declared from “#” with port name and path element index. It means the
collection or data matched to that element now is the starting point to look for the target
writing location for this port. In Statistic workflow, if the read scope of
StatisticCalculator is root collection, the vlaueList port gets a list of humidity data from
each station through “/station//DoubleToken[@label=="humidity"]+”. Without port
reference, the avg output defined as “/station/DoubleToken[@label=="average"]” will
write average statistic value of each station into all station collections because they are all
matched target locations. To avoid such error and keep the corresponding relationships
between input vlaueList port and output avg port, avg port should be defined with port
reference as “#valueList[0]/DoubleToken[@label=="average"]”. “#valueList[0]/” refers
to the collection currently matched to the first element of the valueList binding path.
That’s the station collection where the current input data comes from. Similarly, max port
is defined as “#avg[0]/DoubleToken[@label=="max"]” to output max value to the
collection where the avg value is written. The cases without and with port reference are
demonstrated in Figure 17 and Figure 18 separately. The complete Statistic workflow
with port reference could be found at “<comad-
exp_install_dir>/workflow/demo/Simple/Statistic_portReference.xml”.

HumidityDataCollection

station (s2) station (s5)

Invocation 1

humidity

29.700001

humidity

28.799999

humidity

29.200001

humidity

36.799999

ReadScope: /
valueList: /station//DoubleToken[@label=="humidity"]+
avg: /station/DoubleToken[@label=="average"]

Firing 2 Firing 1
valueList

{29.700001, 28.799999,29.200001}{36.799999} 29.23333436.799999

avg
Firing 1Firing 2

average
29.233334

average
36.799999

average
36.799999

average
29.233334

Data

Invocation Firing

Collection

Figure17. Output Port Data Binding without Port Reference

HumidityDataCollection

station (s2) station (s5)

Invocation 1

humidity

29.700001

humidity

28.799999

humidity

29.200001

humidity

36.799999

ReadScope: /
valueList: /station//DoubleToken[@label=="humidity"]+
avg: #valueList[0]/DoubleToken[@label=="average"]

Firing 2 Firing 1
valueList

{29.700001, 28.799999,29.200001}{36.799999} 29.23333436.799999

avg
Firing 1Firing 2

average
36.799999

average
29.233334

Data

Invocation Firing

Collection

Figure18. Output Port Data Binding With Port Reference

Besides writing th n could also be
reated to contain the written data or annotation. By using special decoration in the path

ls about
sion

e output into an existing collection, the target collectio
c
expression, multiple collections could be created in each invocation, or in each firing, or
as a peer of read scope collection. Also for the above Statistic workflow, if we tend to put
all statistic value in a “statistic” collection clearly separated from raw data, the avg port
could be defined as “#valueList[0]/{-f}statistic/DoubleToken[@label=="average"]”.
Correspondingly, the max port is changed to “#avg[1]/DoubleToken[@label=="max"]”.
“-f” means create collection in each firing. The creation of statistic collection is
illustrated in Figure19. The completed workflow could be found at “<comad-
exp_install_dir>/workflow/demo/Simple/Statistic_creation.xml”. For more detai
creation support in the path expression, please refer to “COMAD Path Expres
Syntax”.

ReadScope: /
valueList: /station//DoubleToken[@label=="humidity"]+
avg: #valueList[0/{-f}statistic]/DoubleToken[@label=="average"]

Data

Invocation Firing
Collection

HumidityDataCollection
Invocation 1

station (s2) station (s5)

humidity

29.700001

humidity

28.799999

humidity

29.200001

humidity

36.799999

Firing 2 Firing 1
valueList

{29.700001, 28.799999,29.200001}{36.799999} 29.23333436.799999

avg
Firing 1Firing 2

average

36.799999

average

29.233334

statistic statistic

Figure19. Collection Creation in Output Port Data Binding

5.3. COMAD Actor Classification
Generally, COMA Coactor.

orkflow assembled from a group of pre-
ling them together, while AtomicCoactor is

e

o

lass for each kind is:
t’s an actor to convert external input into inside data stream of

ifferent
 this actor. For example,

 scope and

The data

ke when the

D actor is classified into AtomicCoactor and Composite
CompositeCoactor is used to encapsulate a sub-w
existing kepler actors by dragging and assemb
for development of new atomic actor. Usually, through data binding configuration, th
input data is automatically prepared for the actor and the output is automatically written
into specific place. But if such automatic data massaging can’t satisfy the developer’s
requirement for some fancy function, they can access the raw token stream directly to d
anything they like by using the ExtendedAtomicCoactor. Since it’s required to be very
familiar with the composition of the underlying data stream, related data structure and
processing mechanism, so ExtendedAtomicCoactor is only suggested for the expert.

5.3.1. AtomicCoactor
Based on the general role the actor plays in the workflow, there’re three kinds of
AtomicCoactor. The base c

 CollectionSource: I
COMAD workflow. It’s always the first actor in workflow. To deal with d
external input, there’re multiple subclasses of
CollectionComposer can receive input in text window, while CollectionReader
can handle input in file. As the data stream composer of workflow,
CollectionSource and its subclasses are very special. They have no read
data binding and only have one port to output the data stream.

 CollectionTransformer: It’s an actor in the middle of the workflow.
stream flows in and out through the input and output port. There’re several call
back methods inside the actor which is invoked at specific time, li
input data is ready. By rewriting these methods in different way, actors with
different data processing functions are developed.

 CollectionSink: It’s an actor at the end of the workflow, with only one input p
to let the data stream flow in. Except this, it’s the sa

ort
me as the

r, firstly it’s required to inherit the CollectionSource.
nd then you need to overwrite the fire method to parse external input and create the

e
e:

CollectionTransformer.

To develop your own source acto
A
corresponding data stream through API of CollectionManager or AnnotationSet. As a
manager of collection or annotation, the CollectionManager and AnnotationSet class
provide creation, deletion and the other management functions for collection, data insid
collection and annotation. Besides fire, there’re five other methods you may overwrit
preinitialize(), initialize(), prefire(), postfire(), and wrapup(). These methods will be
invoked by the system at different time point during the workflow execution to for
initialization or wrap up etc. For more details about these methods, please refer to
https://kepler-project.org/.

To develop your own actor other than source actor, you need to inherit from either

ollectionTransformer or CollectionSink, define the signature, and then overwrite the C
methods as defined in table 6. Usually only the fireActor needs to be overwritten.

Table6. Callback Methods in Actor of CollectionTransformer or CollectionSink Kind
Method Description
void he

nce the read scope
fireActorAfterEnterScope() It’s invoked for initializing t

actor status o
is entered.

DataBindingValueMap
fireActor(DataBindingValueMap inputDataMap) he data processing

h

It’s invoked when actor is ready
to be fired. T
logic is implemented here. The
prepared input data is provided
through the inputDataMap
parameter, while the output is
given back to system throug
the return value.

DataBindingValueMap fireActorBeforeLeaveScope() e
ion for wrap

e.

It’s invoked before the leave th
read scope collect
up. What needs to be written
into data stream is given back to
system through the return valu

Take StatisticCalculator actor for example to see general
eveloped. The source code of StatisticCalculator actor could be found at “<comad-

ly how AtomicCoactor is
d
exp_install_dir>/src/org/kepler/demo/simple/StatisticCalculator.java”.

Firstly the actor inherits from CollectionTransformer.

public class StatisticCalculator extends CollectionTransformer

https://kepler-project.org/

Secondly the signature of actor is defined in constructor. Actually the signature could be

ame,

inally, the data processing logic is implemented by overwriting the fireActor method.

 the

tic

nature

defined in any places as long as it’s defined before the workflow is initialized with it
which is done in the initialize method. Through createSignatureElementParameter
method, one input and three output data ports are declared. For each port, the port n
signature definition and whether it’s an input or output port are defined.

createSignatureElementParameter("valueList", "DoubleToken+", true);

reateSignatureElementParameter("avg", "DoubleToken", false);

c
createSignatureElementParameter("max", "DoubleToken", false);
createSignatureElementParameter("min", "DoubleToken", false);

F
The input data prepared automatically by system is provided through inputDataMap
parameter. It’s actually a map of port name and value. If no data is bound at the port,
value is null. According to the signature definition, the value could be an object like
StringToken, or could be a list of object like List<DoubleToken>. After making statis
with input data, the return object to keep output value for each port is constructed which
will be written into the data stream automatically by system as defined by data binding.
The result DataBindingValueMap object can also be used to declare specific dependency
of the output data. Please refer to “Provenance Recording” for more details about
dependency. For each port, a single object or a list object could be a valid output
depending on the signature definition. For any none optional output port whose sig
has cardinality of one or +, to output null or an empty list result in exception. If the port is
optional and nothing is output, you can either put null as the output value or just don’t put
this port in the returned DataBindingValueMap object. If all the output ports are optional
and nothing is output, you can directly return null.

//get input data
ueListData = inputDataMap.get("valueList");

make statistic

output
ingValueMap outputData = new DataBindingValueMap();

utputData.put("avg", new DoubleToken(avg));

turn outputData;

Object inputVal
List<?> inputValueList = (List<?>)inputValueListData;

//
....

//
DataBind

o
outputData.put("max", new DoubleToken(max));
outputData.put("min", new DoubleToken(min));

re

5.3.2. CompositeCoactor
CompositeCoactor is used to encapsulate a sub-workflow assembled from a group of
kepler actors.

We take the StatisticCalculator actor in the Statistic_Composite workflow as an example
to show how the CompositeCoactor is used. Statistic_Composite workflow could be
found at “<comad-exp_install_dir>/workflow/demo/Simple/Statistic_Composite.xml”.

Step1: Create CompositeCoactor and rename it as StatisticCalculator

1) Go to tool menu and click the “Instantiate Component” item to open the
“Instantiate Component” window. In the text field for the “class name”, type
“org.kepler.coactors.CompositeCoactor” and click “ok”.

2) Right click the icon and choose “Customize Name” to open the rename window.
Type “StatisticCalculator” for both name and display name, then click “Commit”
button.

Figure 20. CompositeCoactor

Step2: Open the sub-workflow design panel and add SDF director. For more information
about SDF director, please refer to https://kepler-project.org/.

1) Right click the actor icon and choose “Open Actor” from the pop-up menu
2) In the right side search field, type “sdf” and click search. In the result shown

below, drag “sdf Director” to the left side workflow design panel. It’s only
allowed to use SDFDirector in CompositeCoactor. The ports with name “input”
and “output” appearing on the canvas are actually the input and output port of the
actor from where the data stream flows in and out. They’re not data binding ports.

https://kepler-project.org/

Figure21. Design panel of CompositeCoactor with SDFDirector

Step3: Add kepler actor, RExpression actor, configure it to implement statistic
computation. For more information about RExpression actor, Please refer to
https://kepler-project.org/.

1) Go to tool menu and click the “Instantiate Component” item to open the
“Instantiate Component” window. In the text field for the “class name”, type
“org.ecoinformatics.seek.R.RExpression” and click “ok”.

2) Add input and output ports for RExpression actor which will be used as variable
in the R script configured later.

a. Right click icon of RExpression actor and choose “Configure Ports” to
open the port configuration window.

b. To add “valueList” input port, click “Add” button, type “valueList” in the
“name” column, check checkbox in “input” and “show name” column.
Except check checkbox in “output” column, the output port of “average”,
“max” and “min” could be created in the same way. Finally click
“Commit” button to finish port configuration.

3) Implement function by writing R script
a. Double click the RExpression icon to open the parameters configuration

window
b. In the text field for “R function or script”, paste the following script and

then click “Commit” button to finish configuration. “valueList” represents
the input data from valueList input port. “mean”, “max” and “min” are
built-in function of R. By assigning value to variable with the same name
as the output port, the value is actually output from that output.

average <- mean(valueList)
max <- max(valueList)
min <- min(valueList)

https://kepler-project.org/

Figure22. RExpression Actor

Step4: Add input and output data binding port for the StatisticCalculator actor which
server as the input and output port for the inside sub-workflow. The final nested
workflow is demonstrated in Figure 23.

1) Go to tool bar and click “New input port” icon, both a new input port with blank
triangle and a signature element parameter with blue circle for this port are added
onto canvas. Drag them to proper location. The port can also be created through
copy of an existing data binding port or through the port configuration window of
this CompositeCoactor.

2) Connect the newly added input port with the “valueList” port of RExpression
actor.

3) Double click the signature element parameter of the newly added port to open the
parameter configure window. Type “DoubleToken+” in the text field and commit.

4) Go to the outside workflow design canvas and open the port configuration
window of StatisticCalculator, change the name of the newly created port to
“valueList” which makes the meaning of this port more clearly.

5) Go to tool bar and click “New output port” icon to add output data binding ports
of avg, min and max in the same way.

6) The nested workflow is done and close the design panel.

Figure23. Nested Workflow of Composite StatisticCalculator

Step 5. Design the top workflow as described in chapter 3. The final finished workflow is
demonstrated in Figure 24. It has the same function as the Statistic workflow with the
atomic StatisticCalculator actor.

1) In the top workflow design canvas, add COMAD director, add and configure the
CollectionComposer and CollectionDisplay actor, connect all the actors in order.

2) Double click the StatisticCalculator icon and set the read scope and data binding
path expression for each port.

Figure24. StatisticCalculator_Composite Workflow

5.3.3. Extended AtomicCoactor
This kind of actor actually works on event-driven mode. When data stream flows through
the actor, once a token arrives at actor an event is triggered. And then the corresponding

event handler method is invoked. In this way, the actor could access everything in the
raw data stream and any fancy data manipulation could be implemented.

Through ExtendedCollectionTransformer or ExtendedCollectionSink, all the event
handler methods as defined in Table 7 are inherited. And the actor can choose to
overwrite some of them as needed. In each handler method, the corresponding token and
the objects managing the related collection or annotations, like CollectionManager or
AnnotationSet, are passed to the actor. Therefore the actor can buffer data or operate on
Collections or Annotations freely. For more detailed API definition, please refer to the
API documents.

Table7. COMAD Actor Event Handler
Handler Method Name Description
handleToken Invoked once any token arrives
handleScopeStart Invoked once an OpeningDelimiterToken arrives

and result in entering the read scope. The
invocation initialization could be done here.

handleCollectionStart Invoked once an OpeningDelimiterToken arrives.

If this event invokes both handleScopeStart and
handleCollectionStart, the handleScopeStart is
invoked before handleCollectionStart.

handleAnnotation Invoked once an AnnotationToken arrives
handleData Invoked once a DataToken arrives
handleException Invoked once a DataToken arrives
handleLoopTermination Invoked once an ExceptionToken arrives
handleInvocationDependencyToken Invoked once a InvocationDependencyToken

arrives
handleCollectionEnd Invoked once a ClosingDelimiterToken arrives
handleScopeEnd Invoked once a ClosingDelimiterToken arrives

and result in leaving the read scope. The
invocation wrap up could be done here.

If the arrival of ClosingDelimiterToken invoke
both handleCollectionEnd and handleScopeEnd,
then handleScopeEnd is invoked after
handleCollectionEnd.

5.4. Provenance Recording
During COMAD workflow execution, the following provenance information is recorded
therefore the data lineage could be fully tracked and the dependency between actors is
clearly showed:

 Insertion: Whenever a token is created and inserted into data stream, it also
contains the provenance information about how it’s created, including invocation
and dependency. Invocation declares the token is created in which invocation of
which actor, while the dependency declares which data or annotation contributes
this insertion operation.

 Deletion: Whenever a token is deleted, a DeletionToken is inserted into data
stream to record this token is deleted in which invocation or which actor.

 Invocation dependency: The dependency between invocations is actually inferred
from data dependency.

o Once a token is inserted in invocation A while the insertion depends on
another token inserted in invocation B, then A depends on B.

o Once a token is deleted in invocation A while it’s inserted in invocation B,
then A depends on B.

For the normal AtomicCoactor and CompositeCoactor, the data dependency for each
newly created data or annotation is generated automatically by system. There’re three
dependency modes for choose:

 Depend on invocation: Depend on all data or annotation used to fire actor ever
since the read scope is entered. This is the default mode.

 Depend on firing: Depend on data or annotation used to fire actor only in the
same firing in which the token is inserted.

 Depend on specified elements: Depend on the specified list of data or annotation
used to fire actor.

The AtomicCoactor could set the dependency mode through the DataBindingValueMap
object returned in fireActor or fireActorBeforeLeaveScope method. In Statistic workflow,
if the read scope of StatisticCalculator is root collection, the vlaueList port gets a list of
humidity data from each station through “/station//DoubleToken[@label=="humidity"]+”.
The actor is invoked once while fired twice as demonstrated in Figure 16. Each time
when the actor is fired, a list of data from one station is input and the statistic value of
this station is output. To make the statistic value only depend on the input data of the
same station instead of input data from all stations, the latter two dependency modes
could be used.

//depend on firing

//output
DataBindingValueMap outputData = new DataBindingValueMap();

outputData.put("avg", new DoubleToken(avg));
outputData.put("max", new DoubleToken(max));
outputData.put("min", new DoubleToken(min));

//set dependency of input elements in each firing
outputData.setDependOnlyOnCurrentFiring();

return outputData;

//depend on specified elements

//get input data
List<?> inputValueList =
(List<?>)inputDataMap.get("valueList");
DependingObjectSet dependingObjects = new DependingObjectSet();

//make statistic
for(int i=0; i<inputValueList.size(); i++){
 dependingObjects.add(inputValueList.get(i));
 ...
}

//output
DataBindingValueMap outputData = new DataBindingValueMap();
...
outputData.setDependingObjectSet(dependingObjects);

return outputData;

The CompositeCoactor only support the former two dependency modes. To use the
second mode, the user needs to check the “Depend on Firing” checkbox in its parameter
configuration window. The extended AtomicCoactor needs to create the dependency set
according to what’s really depended by calling the corresponding API.

The trace file recording all the provenance information of one workflow execution could
be generated by putting TraceWriter actor at the end of the workflow. Then it could be
parsed and visualized by “Provenance Brower” which is an interactive tool for
visualizing and querying data dependency (lineage) graphs produced by scientific
workflow. The browser allows users to explore different views of provenance as well as
to express complex and recursive graph queries through a high-level query language
(QLP). By combining provenance visualization, navigation, and query, the provenance
browser can enable scientists to more easily access and explore scientific workflow
provenance information. The data dependency view and collection structure and
invocation dependency view provided by provenance browser is demonstrated in Figure
25 and Figure 26.

Figure25. Data Dependency View

Figure26. Collection Structure and Invocation Dependency View

6. COMAD Path Expression Syntax
This chapter elaborates the syntax of COMAD path expression used to declare the read
scope, signature and data binding, including path element, qualifier, cardinality,
decoration and port reference

6.1. Path Element
The collection, data or annotation is selected through the path expression. In the path
expression, collection is denoted by its label. Data is denoted by its type. Annotation is
denoted by its key. Wildcard of “*” could represent any label, any type or any key
depending on the context.

Expression Description
/ Match items that are children of the context item. The

context of the read scope is the root collection. The
context of the data binding is the read scope. The single
“/” of the read scope matches the root collection.

// Match items nested in the context item
collection_label Match the collection with the specified label
data_type Match the data with type compatible to the specified type.

Please refer to the chapter of “Type System” about
supported type and their compatible relations.

* Match all collections or data. Which one it denotes to
depends on its path expression context.

@annotation_key Match annotation with the specified key
@* Match all annotations

ReadScope expression example:
Expression Description
/
/*

Match the root collection

/Project Match the root Project collection
/Project/Nexus Match all the Nexus collections as child of the root

collection with label of Project
//GeneSeq Match all the GeneSeq collections
/ Project// GeneSeq Match all the GeneSeq collections as descendant of the

root Project collection.
//Project// GeneSeq Match all the GeneSeq collections as descendant of the

Project collection.
/Project/*
/Project//*

Match all the collections as child of the root Project
collection. These two expressions are equal since the
read scope is not matched in a nested way.

Data binding expression example:
Expression Description
/@cutoff Match all the cutoff annotations of the read scope

collection. Since the annotation with specific key is
unique, so actually at most one annotation will be
matched here.

//@cutoff Match all cutoff annotations for the read scope
collection and all its descendant collections and data.

Notice: The path element with annotation behind double
slash only matches the annotation uniquely. The
duplicated cutoff annotation due to annotation
inheritance won’t be matched repeatedly. Once the
annotation is overwritten, even with the same value, it
becomes a different annotation and then will be
matched.

If read scope collection has one cutoff annotation, and
it’s not overwritten, then only one cutoff annotation is
matched. If cutoff is overwritten for n times, plus the
original one, n+1 annotations are matched.

/@* Match all the annotations of the read scope collection
/Nexus/@cutoff Match the cutoff annotation of the Nexus collection who

is a child of the read scope collection
//Nexus//@cutoff Match all the cutoff annotations uniquely of each Nexus

collection and all its descendant collection and data
while Nexus collection is the descendant of the read
scope collection

//StringToken/@cutoff Match cutoff annotation of each data with type
compatible to StringToken inside read scope collection

6.2. Qualifier
Qualifier declares qualification for the item to be matched. The qualifier is a Boolean
expression consisting of constant, variable, function and operator. Qualifier could be
applied to the path element denoting to the collection, data or annotation.

The following constants are supported:
Constant description example
PI, pi, E, e, true,
false

String constant Anything between
quotes

"hello","10"

Integers constant Numerical values
without decimal
points

10 , -3

Double constant Numerical values
with decimal points

10.0 , 3.14159

Long integer
constant

Integers followed
by the character l
(el) or L

10L, -3L

Complex
constant

A complex is
defined by
appending an “i” or

1+2i , 3+4j

a “j” to a double for
the imaginary part.

Array constant Arrays are specified
with curly brackets

{1, 2, 3}
{"x", "y", "z"}
{1, 2.3}
{2*pi, 3*pi}
{{1, 2}, {3, 4, 5}}

Record constant Records are
delimited by curly
braces, with each
element given a
name.

{length=1, name="foo"}
{value={1,2}, name="foo"}
{value={width=1,length=2}, name="foo"}

The following variables are supported:
Variable name description
@label

Return the label of the element this qualifier is applied to, which
might be a collection or data.

@type Return the type of the element this qualifier is applied to, which
might be a data or annotation.

@value Return the value of the element this qualifier is applied to, which
might be a data or annotation.
This variable should be used carefully. If the value is expected to be a
scalar in the qualifier expression, then any value with type other than
scalar, like string, will result in an expression evaluation exception.
This variable can’t be used for the data with user defined type.

@annotation_key Return the value of the annotation with the specified key.
This variable should be used carefully. If the value is expected to be a
scalar in the qualifier expression, then any value with type other than
scalar, like string, will result in an expression evaluation exception.
This variable can’t be used for the data with user defined type.

The following functions are supported:
function Argument type(s) Return type description
exist @annotation_key boolean Test whether the specified

annotation exists.
type @annotation_key string Return the type of the specified

annotation.
abs double or

complex
double or int or long
(complex returns
double)

absolute value
complex case: abs(a + ib) = |z| =
sqrt(a^2 + b^2)

ceil double double ceiling function, which returns the
smallest (closest to negative
infinity) double value that is not
less than the argument
and is an integer.

floor double double floor function, which is the largest

(closest to positive
infinity) value not greater than the
argument that is an integer.

max double, double or
{double}

a scalar of the same
type as the arguments

maximum

min double, double or
{double}

a scalar of the same
type as the arguments

minimum

pow double, double double first argument to the power of the
second

round double long round to the nearest long,
choosing the next greater integer
when exactly in between. If the
argument is out of range, the
result is either MaxLong or
MinLong, depending on the sign.

The following operators are supported:
Operator Class Operator Expression Description

! not
|| or

Logical Operator

&& and
== Equal
!= Not equal
> Greater than
>= Greater than or equal to
< Less than

Relational Operator

<= Less than or equal to
+ addition
- subtraction
* multiplication
/ division

Arithmetic Operator

% Modulus (division remainder)

Qualifier example:
Expression Description
/DoubleToken[@label=="temperature"] Match the DoubleToken data with the label

of temperature.
/*[@label=="temperature"] Match collection or data with label of

temperature.
/DoubleToken [@value==10.5] Match the DoubleToken data with the

value of 10.5
/@cutoff[@value>1] Match the cutoff annotation with the value

greater than 1.
/Station[@name=="station1"] Match the Station collection with the name

annotation and the value of this annotation

is station1
/StringToken
/*[@type=="StringToken"]

Match data with type compatible to
StringToken.

/@name[@type=="StringToken"] Match the name annotation with type
compatible to StringToken.

/Station[exist(@name)] Match the Station collection with name
annotation

/StringToken[exist(@*)] Match the StringToken data with any
annotation. RunAnnotaiton, including
Coactor annotations and its parameter
annotations, are not counted here.

/Station[type(@name) =="StringToken"] Match the Station collection with the name
annotation and the type of this annotation is
compatible to StringToken.

/DoubleToken[@label!="temperature"] Match the data with type compatible to
DoubleToken and with no label or with
label other than temperature.

/Station[!exist(@name)] Match the Station collection with no
annotation or with annotation other than
name.

/Station[exist(@cutoff) ||
abs(@temperature+10)>1]

Match the Station collection when it has
cutoff annotation or the absolute value of
temperature annotation after adding 10 is
greater than 1

6.3. Cardinality
Cardinality is used for the data or annotation to express the requirement on the number of
the input or output data of the actor. The following cardinality is supported:

Description
Cardinality signature Input port data binding output port data

binding
One
(default)

One data is
expected to be
input or output

In each firing, this port
must provide one bound
data or annotation as the
input

In each firing, this port
must write one output
data or annotation into
data stream.

? Zero or one data
is expected to be
input or output

In each firing, this port
can either provide one
bound data or annotation
as input or provide
nothing.

In each firing, this port
can either write one
output data or
annotation into data
stream or write
nothing.

* Zero or multiple
data is expected
to be input or
output

In each firing, this port
can either provide one
none empty list of bound
data or annotation as

In each firing, this port
can either write one
none empty list of
output data or

input or provide nothing. annotation into data
stream or write
nothing.

+ Multiple data is
expected to be
input or output

In each firing, this port
must provide one none
empty list of bound data
or annotation as input.

In each firing, this port
must write one none
empty list of output
data or annotation into
data stream.

Cardinality can be used in the signature and data binding. When it’s in the data binding, it
can only be used for the last element in the data binding path to declare the number of
data or annotation to bind.

When cardinality of * or + is used in the data binding, it means multiple data or
annotation will be accumulated and fed into the actor as a list. The boundary of such
accumulation is the collection or data matched to the second to last element of the data
binding path. If the path only has one element, then the boundary is the read scope
collection. For example in Statistic workflow, if the read scope of StaticCalculator actor
is “/HumidityDataCollection” and the data binding of valueList port is
“/station//DoubleToken[@label=="humidity"]+”, then the humidity data will be grouped
by the station. But if the read scope is “/HumidityDataCollection” and the data binding is
“//DoubleToken[@label=="humidity"]+”, then the humidity data from all stations will be
accumulated together into one big list.

6.4. Decoration
Decoration is used before the element to declare special operation.

Decoration is declared as a switch inside a pair of curly brackets, like {-op}. Multiple
decoration could be declared as {-op1 -op2}. The order of the multiple decorations for
one element doesn’t matter.

Three kinds of decoration are supported:

 Life management of the element, including creation and deletion
 Exact type match requirement: By default the type compatible to the target type is

treated as a match type.
 Split of the data in structural type

6.4.1. Life management
This decoration is applied to collection, data and annotation to manage their lives,
including creation and deletion.

6.4.1.1. Creation
The collection, data and annotation can only be created when an actor outputs new value.
Therefore such decoration can only appear in the output data binding. The new output
data and annotation will be created automatically. But a decoration must be used to
declare a collection needs to be created.

There’re three decorations to create collection at different time or at specific location:

 {-i} or {-invocation}: create the collection in each invocation.
 {-f} or {-firing}: create the collection in each firing
 {-p} or {-peer}:

o create the collection as the peer of the read scope collection. By default
such creation happens once in each invocation. So {-p} equals to {-p -i}
by default. But if use the combination of {-p -f}, such creation happens
once in each firing.

o create the data as the peer of the read scope collection whenever it needs
to be created.

The rules to use and parse the creation decoration:

 For a collection without any creation decoration, the system will try to find the
matched collection that already exists and then write the data or annotation into it.
If there’s no matched collection, nothing will be written into the data stream.

 The creation only happens when the output data binding port has an output data or
annotation.

o If the actor is invoked while the port has no output in the whole invocation,
then no path will be created in this invocation even if there’s {-i} or {-p}
or {-p -i}.

o If the actor is fired while the port has no output in this firing, then no path
will be created in this firing even if there’s {-f} or {-p -f}

 Multiple occurrence of {-i} and {-f}
o Multiple occurrence of {-i} equals to only keep the first occurrence of the

{-i}
o Multiple occurrence of {-f} equals to only keep the first occurrence of the

{-f}
o If both {-i} and {-f} occurs, {-f} can only appears after the element

decorated by {-i}.
o The output binding expression with {-i} and {-f} could be divided into

three segments.
 The first segment is the sub-path before the first occurrence of the

{-i}. This sub-path will match to the existed collection.
 The second segment is the sub-path between the first occurrence of

the {-i} and {-f}. This sub-path will be created one time for each
invocation.

 The third segment is the sub-path after the first occurrence of the
{-f}. This sub-path will be created in each firing.

 Rule for {-p}
o {-p} can only decorate the first element in the path. Then the whole path

will be created as a peer of the read scope collection. The {-i} or {-f}
inside the path keep the same operation semantics.

o {-p} is disallowed to be used when the read scope collection is the root
collection, since it’s impossible to create a collection as a peer of the root

collection. All the collection, data or annotation must be inside the root
collection.

o {-p} is disallowed to decorate the annotation since the annotation can’t be
a peer of the read scope collection.

 The relative path delimiter “//” is forbidden to be used for the newly created
elements, including collection, data and annotation

o The “//” is forbidden for the element decorated by {-i}, {-f} or {-p}
o The “//” is forbidden to appear after the element decorated by {-i}, {-f} or

{-p}

Example of the creation decoration in the output data binding:
Expression Valid Description
/Station/DoubleToken yes Create a DoubleToken data in each

firing as a child of any matched Station
collection

/{-i}Station/DoubleToken yes Create a Station collection as a child of
the read scope collection in each
invocation.
And then create a DoubleToken data in
each firing as a child of this newly
created Station collection.

/{-i}Station/{-i}Month/DoubleToken
/{-i}Station/Month/DoubleToken

yes Create a subtree of /Station/Month as a
child of the read scope collection in
each invocation.
And then create a DoubleToken data in
each firing as a child of this newly
created Month collection.

/{-f}Station/DoubleToken yes Create a Station collection as a child of
the read scope collection in each firing.
And then create a DoubleToken data in
each firing as a child of this newly
created Station collection.

/{-p}StringToken yes Create the StringToken as a peer of the
read scope collection in the data stream

/{-p}Station/DoubleToken
/{-p -i}Station/DoubleToken

yes Create the Station collection as a peer
of the read scope collection in each
invocation.
And then create the DoubleToken data
in each firing as a child of this newly
created Station collection.

/{-p -f}Station/DoubleToken yes Create the Station collection as a peer
of the read scope collection in each
firing.
And then create the DoubleToken data
in each firing as a child of this newly
created Station collection.

/{-p}Temperature/{-i}Station/{-
f}Month/DoubleToken

yes Create the Temperature collection as a
peer of the read scope collection in
each invocation.
Create the Station collection as a child
of the newly created Temperature
collection in each invocation.
Create the Month collection as a child
of the newly created Station collection
in each firing.
Create the DoubleToken data in each
firing as a child of this newly created
Station collection

/{-i}StringToken
/{-f}StringToken
/{-i}@cutoff
/{-f}}@cutoff

no Data and annotation is created
automatically when it’s output. {-i} and
{-f} can only decorate the collection
needs to be created.

//{-p}StringToken
//{-i}Station/StringToken
/{-f}Station//Month/DoubleToken

no relative path delimiter “//” is forbidden
to be used at the element or after the
element decorated by {-i}, {-f} or {-p}

/{-f}Station/{-i}Month/DoubleToken no {-f} is disallowed to appear before the
{-i}

/Station/{-p}Month/DoubleToken no {-p} can only decorate the first element
/{-p}@cutoff no {-p} can’t decorate the annotation

6.4.1.2. Deletion
This decoration is used to delete the collection, data or annotation from the data stream.

The element with such decoration is visible to the actor where it’s deleted. But once it
leaves the actor, the deletion takes effect. It’s invisible to the successive actor generally
except in some special cases when the deleted token needs to be visible.

When the collection is deleted, the collection, its annotations and all its descendants,
including collection, data and annotation, are all deleted. When the data is deleted, the
data and its annotations are deleted. When the annotation is deleted, the annotation itself
is deleted.

Deletion decoration is declared as {-d} or {-delete}. The rules to use and parse this
decoration are:

 {-d} can only be used in the read scope or input data binding.
o For read scope: {-d} is only allowed to decorate the read scope collection.

So it’s only allowed to appear in front of the last element of the read scope
expression.

o For input data binding: {-d} is allowed to be in front of any element in the
path expression.

 If it tends to output new element inside the deleted collection or as an annotation
to a deleted collection or data, then an exception will be thrown out.

 If the path in the data binding with delete decoration is matched once the read
scope collection is entered, the deletion will take effect even if the actor is not
fired since the input data is not ready.

Example of deletion decoration in read scope:
Expression Valid Description
/Station//{-d}Month Yes Delete all the Month collections as

descendants of the Station collection
/{-d}Station//Month No It’s disallowed to delete the collection

other than the read scope collection in
the read scope

Example of deletion decoration in input data binding:
Expression Valid Description
/Station//{-d}StringToken Yes Delete the StringToken data as

descendants of the Station collection.
/{-d}Station//StringToken Yes Delete the Station collection that is an

ancestor of the StringToken.
/{-d}@cutoff[@type=”DoubleToken”] Yes Delete the cutoff annotation of the

read scope collection with type of
DoubleToken

6.4.2. Exact type match
The match based on the type is “compatible type match” instead of “exact type match” by
default. When the StringToken is expected, the token with type compatible to
StringToken is matched. For the definition of the “compatible type”, please refer to the
type system chapter. To support declaration of match to a type exactly, this decoration is
introduced.

The exact type match decoration is declared as {-e} or {-exact}. The rules to use and
parse this decoration are:

 {-e} is used just before the type declaration, including type constant, type variable
or type function.

 Since {-e} is used for the element match and selection, this decoration can only be
used in the read scope, input data binding, input signature, while can’t be used for
the output data binding and output signature.

Example of exact type match decoration:
Expression Description
/StringToken Match all the data with type compatible to

StringToken, might includes IntegerToken,
DoubleToken etc.

/{-e}StringToken Match all the data with the exact type of

StringToken.
/@name[{-e}@type=="StringToken"] Match the name annotation whose type is

exactly StringToken.
/StringToken[{-e}type(@name)
=="StringToken"]

Match all the data with type compatible to
StringToken and has name annotation whose
type is exactly StringToken.

6.4.3. Split of structural type
ArrayToken and RecordToken are two structural types supported in COMAD. Following
the COMAD design idea, if the inside element, instead of the whole data, of such
structural type will be consumed by the actor individually, the data should be tore open
with each data representing each element. In this way, the actor doesn’t need to tear open
and wrap up the data repeatedly. It’s easier for the actor to pick up the interested data.
Therefore, split decoration is introduced for such requirement. Obviously, such split is
not needed while the data in such structural type is consumed by the actor as a whole. In
this case, the use of the atomic data in structural type instead of a collection, is more neat
and efficient.

Split operation is only available to the output data. And the split is only tear open the top
level while not handling the deeply nested level. The way to declare split requirement is
different for the type of RecordToken and ArrayToken.

 RecordToken
o Split decoration is declared as {-s} or {-split} before the output data. It’s

not used for the collection or annotation.
o {-s} can’t be used together with cardinality of “*” or “+”

 ArrayToken
o The output data in type of ArrayToken is split when the output data

binding is declared as the element type plus cardinality of * or +.

Example of the split operation:
Output data Output data binding Description

/RecordToken (
 name=StringToken,
 value=IntegerToken)

One RecordToken data with
value of
{name="Jim",value=1} is
written into the data stream.

{name="Jim",
 value=1}

/{-s}RecordToken (
 name=StringToken,
 value=IntegerToken)

Two data are written into the
data stream. One is the
StringToken data with label of
name and value of Jim.
Another is the IntegerToken
data with label of value and
value of 1.

{name="Jim",
 value={1,2}}

/{-s}RecordToken (
name=StringToken,
value=ArrayToken(IntegerToken))

Two data are written into the
data stream. One is the
StringToken data with label of

name and value of Jim.
Another is the ArrayToken
data with label of value and
value of {1,2}.

/ArrayToken(IntegerToken) One ArrayToken data with
value of {1,2} is written into
the data stream.

{1,2}

/IntegerToken+ Two IntegerToken data are
written into the data stream.
One is the 1 and another is 2.

6.5. Port Reference
By default, the output data will be written at all the places matched to the data binding
expression inside the read scope collection. The port reference is used to declare the
output data will only be written into the specific location related to some input or output
port in the same firing.

The port reference is only used in the output data binding. Such data binding expression
starts from port reference expression with the normal path expression followed. The port
reference expression is defined as: #referenced_port[path_element_idx] :

 referenced_port: It’s the name of the referenced port. It could be any input or
output port of the same actor. The system will parse the port in order according to
such dependency. But once the circle reference is found, an exception will be
thrown out.

 path_element_idx: It’s the element index of data binding expression of the
referenced port. It means the sub path of the referenced data binding expression
from the beginning to the specified index will be used as the starting point to
search for the writing place of this output data. The specified sub-path might
change in each firing since it’s possible to match different element in different
firing. If the whole path will be referenced, the path_element_idx could be
omitted.

The output data binding with reference to other data binding can also be referenced by
another output data binding.

If the output data binding is declared as none optional through its cardinality, then its
referenced data binding should also have the cardinality with the none optional semantics.

If the output data binding reference a path in an input data binding and the referenced
path will be deleted since the decoration {-d} is used, an exception will be thrown out
because it’s meaningless to output anything under a path will be deleted.

When an output annotation references a data, the rules to write the annotation into the
data stream in case of various combinations of the cardinalities are:
Cardinality of the output Cardinality of the rule

annotation referenced output data
default cardinality or ? default cardinality or ? The one output annotation

will be written as the
annotation of the one output
data in the same firing.

default cardinality or ? * or + The one output annotation
will be written as the
annotation of each of the
output data in the same
firing

* or + default cardinality or ? The multiple output
annotations will be written
as the annotations for the
one output data in the same
firing. Since the key of the
annotation for the same data
or collection is not allowed
to be the same. An
automatically increased
number will be append to
the key.

* or + * or + The pairing semantics is
implemented in the case.
The multiple output
annotations will be paired to
the multiple output data. So
it requires the number of the
output data and annotations
must be the same.

Example of the port reference:
Data Binding Description
Input1: /Station/DoubleToken
Output1: #Input1/@name

Output a name annotation to the input
DoubleToken in the same firing

Input1: /Station/DoubleToken
Output1: #Input1[0]/StationOne/{-
i}Month/DoubleToken

The output DoubleToken is written under the
Station collection where the input StringToken
comes from in the same firing. Firstly a Month
collection will be created in each invocation as a
child of each existed StationOne collection which
is child of the Station collection. And the
DoubleToken will be written inside this collection
as its child.

Input1: /Station/DoubleToken
Output1: #Input1/@month

Output month annotation for the input
DoubleToken in the same firing

Input1: /Station/DoubleToken
Output1: #Input1/@month+

Output multiple month annotations to the input
DoubleToken in the same firing. The key of the

annotation has a automatically increased number in
the end, like month, month1, month2...

Input1: /Station/DoubleToken+
Output1: #Input1/@month

Output month annotation for each input
DoubleToken in the same firing

Input1: /Station/DoubleToken+
Output1: #Input1/@month+

Pairing the output month annotation for each input
DoubleToken in the same firing. The number of
the output month annotation and the number of the
input DoubleToken should be the same.

Input1: /Station/DoubleToken
Output1: #Output2/@name
Output2: #Input1[0]/StationOne/{-
i}Month/DoubleToken

The Output2 outputs DoubleToken under the
Station collection where the input StringToken
comes from in the same firing. Firstly a Month
collection will be created in each invocation as a
child of each existed StationOne collection which
is child of the Station collection. And the
DoubleToken will be written inside this collection
as its child.
The Output1 outputs the name annotation for the
DoubleToken output by Output2.

7. Type System
Each data or annotation token in COMAD stream encapsulates a data object with specific
type. There’re several built-in types in COMAD. User-defined type is also supported.
The type lattice defines the compatible relations between different types, while the type
match is defined based on such relations. Usually one type is matched to another, when
this type is compatible to it. The match of type determines whether the data or annotation
token is bound. It also determines whether signature, data binding and the input/output
data are consistent with each other. In some cases, the input/output data needs to be
converted to be of the expected type.

7.1. Type Category

7.1.1. System Built-in Type
 The COMAD system built-in type is defined in Table 7.

Table7. COMAD Built-in Type
Type Name Example Data Value Description
Object or * - Base type of all types
Token - Base type of all token types
DoubleToken 1.233e03, -3.34, 3.14159 The object of this type

encapsulates double value
IntegerToken 833, 34, 56 The object of this type

encapsulates integer value
LongToken 43L, -345443211,

43343332233
The object of this type
encapsulates long value

ComplexToken 1+3i, 22.1i, 22.1+0i The object of this type
encapsulates complex value

ScalarToken - Base type for all numeric
token types and
BolleanToken

StringToken "Greetings!" The object of this type
encapsulates string value

BooleanToken true, false The object of this type
encapsulates boolean value

ArrayToken(element_type)

e.g.
ArrayToken(IntegerToken)
ArrayToken(StringToken)

{1,2,3}, {"Tom","Jack"} The object of this type
encapsulates an array with
element type as defined in
the type name.

RecordToken(
element_name=elemen_type,
….)

e.g.
RecordToken(

name=StringToken,
age=IntegerToken)

{name="Jack", age=30} The object of this type
encapsulates a record with
element name and type as
defined in the type name.

DomainObject - Base type of all user defined
types

Token is a structural type encapsulating concrete data value. For example, "Hello", a
string of alpha-numeric characters, is encapsulated as a string token. While 3, an integer
is encapsulated as an integer token. For more details, please refer to Kepler documents.

RecordToken and ArrayToken are structural types encapsulating data of the other token
types. The concrete RecordToken and ArrayToken type are decided by the inside element
name and types. The element name is a string of alpha-numeric characters. The element
type could be any built-in token type, even a type of RecordToken or ArrayToken.

In the declaration of the workflow input, if the data or annotation token is declared
without type, then its type is inferred automatically from the value. Otherwise, the data
object encapsulated in the token is created as an object with specified type. During this
process, an exception will be thrown out if the type of data value is actually not as
specified. For a data or annotation token without type, if its value is a quoted string of
characters, it’s parsed into a StringToken. But once a data or annotation token declares its
type as StringToken, the pair of outside quotes is not needed anymore.

The following is some examples to declare data or annotation token with various system
built-in types.

//StringToken
<Annotation key="station_number">"s2"</Annotation>
<Annotation key="station_number" type ="StringToken">s2</Annotation>

//DoubleToken
<Data>29.700001</Data>
<Data type="DoubleToken">29.700001</Data>

//ArrayToken
<Data>{1,2,3}</Data>
<Data>{"1","2","3"}</Data>
<Data type="ArrayToken(ScalarToken)">{1, 24.43, -3.2, true}</Data>

//RecordToken
<Data>{name="Jack", age=30}</Data>
<Data type="RecordToken(name=StringToken, gae=IntegerToken)">

{name="Jack", age=30}
</Data>
<Data{name="arrayOne", value={1,2,3}}</Data>
<Data type="RecordToken(name=StringToken, value=ArrayToken(IntegerToken))">

{name="arrayOne", value={1,2,3}}
</Data>

//Invalid Declaration
<Data type="IntegerToken">29.700001</Data>
<Data type="DoubleToken">hello</Data>

Sometimes the type of ArrayToken or RecordToken is too long to be used conveniently.
Sometimes, the user expects to use a domain-specific name for the type to make its
meaning clearer. The type alias could be used in these cases. Any built-in type except
Object and DomainObject, could be assigned with an alias which is registered through
“TypeSystem” component of the workflow. After it’s registered, the type alias could be
used everywhere as the same as the normal type. The use of type alias should be careful
to avoid side-effect, because once a type alias is defined, all the appearance of the
original type will be replaced by the alias.

To demonstrate how type alias is defined and used, a complex RecordToken is used in
Statistic workflow to encapsulate all the data inside each station collection. It has two
elements. The timestamps and humidity elements contain timestamp and humidity value
separately of all collection points in the same order. Both of them are an array of
DoubleToken. For example, the s2 station is changed to:

<Collection label="station">
<Data>

{ timestamps={1.196499599E9,1.196503199E9,1.196510399E9},
 humidity={29.700001,28.799999,29.200001}}

</Data>
</Collection>

The complete type definition of this data is
RecordToken(timestamps=ArrayToken(DoubleToken),
humidity=ArrayToken(DoubleToken)). Without type alias, this long and complex string
needs to be used repeatedly in both data binding and signature. To make it simple to be

referenced and make its meaning clearer, CollectonPoints is registered as its type alias in
“TypeSystem” component with the following steps:

1. Go to tool menu and click the “Instantiate Attribute” item to open the “Instantiate
Attribute” window. In the text field for the “class name”, type
“org.kepler.types.TypeSystem” and click “ok”.

2. Double click TypeSystem icon to open parameter configuration window and click
“Add” button to add “CollectionPoints” type alias definition in the opened
window:
1) Type “CollectionPoints” in the “name” field
2) Type “RecordToken(timestamps=ArrayToken(DoubleToken),

humidity=ArrayToken(DoubleToken))” for the “default value” field
3) Click “OK” and finally commit the configuration

The added TypeSystem component and the registry for type alias of CollectionPoints are
demonstrated in Figure 27. While the usage of CollectionPoints in data binding and
signature is shown in Figure 28. The complete workflow could be found at “<comad-
exp_install_dir>/workflow/demo/Simple/Statistic_TypeAlias.xml”.

Figure27. Type Alias Registered in TypeSystem

Figure28. Type Alias in Data Binding and Signature

7.1.2. User-Defined Type
For domain-specific data, sometimes user-defined type is more convenient to encapsulate
and operate data.

Similar to type alias, user-defined type is registered in “TypeSystem” component with
type name and the class representing domain-specific data object. A data object in user-
defined type can’t be encapsulated by an annotation token. For data token encapsulating
data value in user-defined type, the type can’t be inferred from the value and therefore
must be declared explicitly. Except these, the user-defined type is used in the same way
as the system built-in type once it’s registered successfully.

Each domain object must provide a constructor to enable it be initialized from an xml
node. This constructor is used to create the object from the external workflow input in
either native COMAD forma or general XML format. The key feature of a domain object
is that its state must not change once the data token encapsulating the object is inserted
into data stream. Thus, a domain object must implement methods for write-locking the
object, and verifying that it is indeed locked. The object must also be able to represent its
state as XML. These methods elaborated in table 8 are defined in LockableDomainObject
interface which extends from the DomainObject interface. Each class of domain object is
required to implement LockableDomainObject interface and overwrite these methods.

Table8. Mandatory Methods for Domain Object Class
Method Description
void setWriteLock() Write-locks the object for

immutability.

This method is invoked
automatically by system when the

data token encapsulating this
object is created and inserted into
data stream.

boolean isWriteLocked() Verifies that the object is write-
locked.

This method should be invoked
whenever before the state of
object is to be changed.

String
getXmlContentString(Xml.Indentation indentation)

Renders the state of the object as
XML element content which may
be a single line of text, or one or
more XML elements. The
indentation parameter is used to
indent the return value to an
appropriate level of tabulation

To demonstrate how user-defined type is defined and used, a CollectionPoint type is used
in Statistic workflow to encapsulate a pair of timestamp and humidity data. Figure 29
demonstrates how CollectionPoint type is registered in TypeSystem component. It’s
similar to register type alias. The only difference is that the full class name of the domain
object should be put as the “default value” of the type instead of the original type name of
type alias. The source code of CollectionPoint class and the actor of
StatisticCalculatorOnCollectionPoint to consume objects in such type could be found at
“<comad-exp_install_dir>/src/org/kepler/demo/simple”. The complete workflow could
be found at “<comad-
exp_install_dir>/workflow/demo/Simple/Statistic_UserDefinedType.xml”.

Figure29. User-Defined Type Registered in TypeSystem

7.2. Type Compatibility and Data Format conversion
The compatible relations between COMAD types are defined as type lattice in Figure 30.
One type is compatible to another if the first type is allowed to be converted to the second
type. In type lattice, the first type is below the second type.

Generally one type is matched to another if the first type is compatible to the second one.
But if the second type is decorated with the “exact type match” tag, then the first type is
matched to the second type only if it’s exactly the same type as the second one. For
example, “IntegerToken” type is matched to “LongToken” type while “IntegerToken”
type is not matched to “{-e}LongToken” type. For more details about “exact type match”
used in the path expression, please refer to the “COMAD PATH Expression Syntax”
chapter.

The compatible relation between two ArrayToken is decided by their element types. If
their element types are compatible, then they’re compatible. Otherwise, they’re not. For
example, ArrayToken(IntegerToken) is compatible to ArrayToken(ScalarToken).

The compatible relation between two RecordToken is decided by both the element name
and type. If they have the same group of element name and for each pair of element with
the same name their types are compatible with the same direction (all element types of
one RecordToken are compatible to the types of another, or vice versa), they’re
compatible. Otherwise they’re not. For example,
RecordToken(name=IntegerToken,value=DoubleToken) is compatible to
RecordToken(name=StringToken,value=ScalarToken).

Besides implementing DomainObject interface, the user-defined type can also inherit the
other token type. In this case, the user-defined type is compatible to the token type which
it inherits. One user-defined type is compatible to another if the first one is subclass of
the second one.

DoubleToken

Object

StringToken

DomainObjectToken

ScalarToken

IntegerToken

LongToken ComplexToken BooleanToken

ArrayToken RecordToken

User Defined Type

Token Type

Figure30. COMAD Type Lattice

The type compatibility is used to test the consistency between data, data binding and
signature. But COMAD doesn’t do type conversion. For example, it’s valid to output an
IntegerToken while the output signature is “StringToken” since IntegerToken is
compatible to StringToken. But we won’t really convert the IntegerToken into a
StringToken. And finally it’s the IntegerToken written into data stream instead of a
StringToken.

Although COMAD doesn’t do any type conversion, yet it does do data format conversion
automatically if possible to provide better data messaging service for actor. Therefore
actor could focus on data processing logic and then be easily reused. The workflow can
also benefit from this to present neat structure. For these convertible data formats, their
types are treated as compatible in the consistency test although originally they’re not.

The data format conversion could be done to convert the buffered input data to the format
as expected by the input port signature, or to convert the output data to the format as
expected by the output port data binding. There’re two kinds of data format conversion:

 List vs. ArrayToken: No List type is directly supported by COMAD. But, if the
cardinality of signature or data binding is * or +, the type of the signature or data
binding is actually a List while its element type is the type defined in signature or
data binding. For example, the type of signature “/DoubleToken+” is
List<DoubleToken>. COMAD supports data format conversion between List and
ArrayToken if and only if their element types are compatible. So whether a List
type is compatible to an ArrayToken type or vice versa is also decided by their
element types. For example, the data could be converted between the formats of
ArrayToken(DoubleToken) and List<DoubleToken >. The

ArrayToken(DoubleToken) type and DoubleToken+ are compatible to each other.
The data can only be converted from the format of ArrayToken(DoubleToken) to
a list of scalarToken. The ArrayToken(DoubleToken) type is compatible to
scalarToken+ but the opposite direction is not true.

 singleton case: In mathematical definition, singleton is a set with one element.
Similarly, the singleton case of COMAD is to convert one single data into a List
or an ArrayToken with that data as its only element. The precondition is the type
of the single data must be compatible to the element type of the List or
ArrayToken. For example, in singleton case, an data could be converted from an
IntegerToken to an ArrayToken(LongToken) or List<ScalarToken>.

Besides the above general cases of data format conversion, special data format
conversion is done at CompositeCoactor. The workflow nested inside CompositeCoactor
is a normal kepler workflow which can only receive token type. Therefore, all the data
with user-defined type given into or output from the nested workflow is encapsulated in
an ObjectToken. The CompositeCoactor assembles data into an ObjectToken and
disassembles ObjectToken to get the encapsulated data automatically before and after
firing inside workflow.

In COMAD, the type compatibility relations among data, data binding and signature at
each port are concluded in table 9.The type declared in signature or data binding is
denoted as basic-type while the type of signature or data binding is denoted as signature-
type or binding-type. For example, in data binding like “/DoubleToken+”, the basic-type
is DoubleToken while the binding-type is List<DoubleToken>. The left side type of “≤”
is compatible to the right side type.

Table9. Type Compatibility Relations of Data, Data Binding and Signature

Port
Category

Type
Relations

Example Description

data type

 ≤

basic-type of
data binding

IntegerToken: ScalarToken

IntegerToken: ScalarToken +

The incoming data
is bound only if its
type is compatible
to the basic-type of
input data binding.

Input

binding-type

 ≤

signature-type

IntegerToken:ScalarToken

IntegerToken+: ScalarToken+

ArrayToken(IntegerToken): ScalarToken+

IntegerToken+:ArrayToken(ScalarToken)

IntegerToken: ArrayToken(ScalarToken)

IntegerToken: ScalarToken+

Binding-type must
be compatible to
signature-type.
Otherwise, an
exception is
thrown out.

Sometimes, the
input data prepared
by data binding
needs to be
converted to target
format expected by
signature.

Data type

 ≤

signature-type

IntegerToken: ScalarToken

ArrayToken(IntegerToken): ScalarToken+

List<IntegerToken>:ScalarToken+

List<IntegerToken>:ArrayToken(ScalarToken)

The type of output
data must be
compatible to the
signature-type.
Otherwise, an
exception is
thrown out.

Output

signature-type

 ≤

binding-type

IntegerToken:ScalarToken

IntegerToken+: ScalarToken+

ArrayToken(IntegerToken): ScalarToken+

IntegerToken+:ArrayToken(ScalarToken)

IntegerToken: ArrayToken(ScalarToken)

IntegerToken: ScalarToken+

Signature-type
must be
compatible to the
binding-type.
Otherwise, an
exception is
thrown out.

Sometimes, the
output data needs
to be converted to
the target format
expected by data
binding.

8. Demo
Except for the Statistic workflow introduced through this manual, three other demos are
included in this install package to show multiple features of COMAD.

All the workflows could be found under the corresponding directory at “<comad-
exp_install_dir>/workflow/demo”. All the source code could be found under the
corresponding directory at “comad-exp_install_dir>/src/org/kepler/demo”.

8.1. Comet
Comet workflow analyzes meteorological data coming from comet project
(http://comet.ucdavis.edu/wiki/index.php/Main_Page). The main analysis steps are:

 Collect hourly humidity data in ten days from the weather stations
 Aggregate the hourly data based on a group of time window and calculate basic

statistic data, like min, max etc, for the data aggregated in each window.
 Make further analysis of the data in each window, like calculating the Growing

Degree Day, drawing time-based trend graph or making some comparison

Basically the workflow is composed by six actors:

 CollectionComposer: convert external input data from one station into COMAD
data stream.

 WindowsGenerator: generate a group of time windows to aggregate data
according to specific parameters, including number of generated windows, the
start time of the first window, the interval of each window, and the slide time
between adjacent windows.

 Chunker: aggregate the data based on the time windows and make basic statistics
for the group of data in each window.

 GddCalculator: compute gdd (growing degree day) according to the statistic data
of min and max for each window

 RPlotter: draw the average and gdd time-based trend graph for each window by
using RExpression.

 TraceWriter: write the whole data collection and all related provenance
information into a file for the future provenance analysis.

This demo shows the following features of COMAD through four workflows.

Linear structure: Usually COMAD workflow is linear. The Figure24 shows the comet
workflow built with COMAD while Figure25 shows the same workflow built with PN
director. Obviously, COMAD workflow with linear structure demonstrates the original
data analysis process more clearly.

Figure31. Comet workflow with COMAD Director

Figure32. Comet workflow with PN Director

Streaming mode: The data inside COMAD is organized into a data stream. Different
actors are possible to work on different parts of data stream at the same time. The system

performance could be improved through such Parallelism. The data streaming feature is
showed in one_station_SequencePlotter workflow. Based on one_station_RPlotter
workflow, the one_station_SequencePlotter is constructed by adding a SequencePlotter
actor after the RPlotter actor. And the streaming feature could be seen clearly in the
following ways:

 The SequencePlotter draws the graph based on the received sequence of data.
Once it receives a data, it draws the point accordingly. By setting the “delay”
parameter of the SequencePlotter to increase the time distance to draw the graph
between each accepted data, we can clearly see the data comes one by one in a
streaming way and the graph is drawn one point after another.

 Although SequencePlotter is behind RPlotter, yet it begins to plot before the
RPlotter because RPlotter needs to wait until all data arrives but it doesn't block
the data stream. Therefore the SequencePlotter could still receive data and begins
to plot before RPlotter.

High reusability and adaptability of the actor: The two_station_RPlotter and
three_station_RPlotter workflows implement the same function as the
one_station_RPlotter workflow. The only difference is the source data comes from more
stations which might belong to different county. The change of source data structure is
showed in Figure26. By changing binding configuration, the COMAD actor is easily
reused and adapted to the change of the data structure and workflow organization:

 To adapt to the data structure change, the only change from one_station_RPlotter
to two_station_RPlotter is the read scope of Chunker actor. It’s changed from “/”
to “//station”.

 In two_station_RPlotter, to draw graph for one station each time instead of two,
just need to change the read scope of RPlotter from “//AggregationResult” to
“//AggregationResult[@station_number=="s2"]”

 Nothing needs to be changed from two_station_RPlotter to
Three_station_RPlotter to deal with data with additional added hierarchy.

one_station_RPlotter two_station_RPlotter three_station_RPlotter

HourlyDataStatistic

CollectionPoint

humidity timestamps

CollectionPoint

timestamps

station

humidity

county

HourlyDataStatistic

humidity

CollectionPoint

timestamps

station

HourlyDataStatistic

DataCollection

Figure33. Source Data Structure of Comet workflows

This demo could also help user to understand how easy it’s to develop an actor and how
powerful the path expression syntax is to express various binding requirement. By

browsing the trace file generated by TraceWriter or use the “Provenance Browser” to
browse and query the data lineage, the user could also see how great support provided by
COMAD for provenance capturing.

8.2. PICalculation
Usually COMAD workflow is linear. But comad can also support “do-while” loop
structure. PICalculation workflow demonstrates how to implement such “do-while” loop
in COMAD.

PICalculation workflow calculates PI through multiple iterations. The formula
implemented in this workflow to calculate PI is: PI = 4-4/3+4/5-4/7…..

PICalculation consists of five actors:

 CollectionComposer: compose the initial data stream consists of initial data value
and iteration number used for PI calculation

 StartLoop and EndLoop define the loop boundary. In both actors, the target
collection which is looped over is defined through loopCollectionLabel parameter.
The loop termination condition is defined in EndLoop. In this workflow, the
termination condition is the iteration times.

 PICalculator: calculate the new PI value according to the iteration number and the
current PI with the above formula.

 CollectionDisplay: display the final PI calculation result and the iteration number.

Besides loop structure, PICalculation workflow also shows how to delete data or
annotation through input binding path expression. By checking “show provenance”
choice in CollectionDisplay actor, the fully collection modification traces is shown,
including all deleted items, instead of showing only the final result.

8.3. MobyService
COMAD actor is configurable, including the number of input/output port, corresponding
signatures, and even the data processing logic. Benefiting from this ability, a group of
configurable data processing services could be simply modeled as one COMAD actor
instead of a large number of actors with similar behavior.

BioMoby service is for biological data analysis. All BioMoby services are registered in
several registries. Similar to web service, there’s standard API to search BioMoby service,
get metadata of each service, including input/output number and type etc, and access the
service.

As an abstract BioMoby service client, the SimpleMobyServiceAccessor actor could be
instantiated to encapsulate specific BioMoby service according to the service name
configuration. In SimpleMobyServiceAccessor, the service name is configured through
MobyServiceName parameter by typing or choosing the name from the drop list. After
commit to make the configuration take effect, the actor is instantiated to be the specific
service client. Each input or output of the service corresponds to an input or output data
binding port in the actor, while the type of input or output is used to generate the

signature correspondingly. In this way, thousands of BioMoby services could be modeled
by one COMAD actor.

Two workflows composed by BioMoby services are demonstrated. Blast workflow gets
blast analysis result for a gene or protein denoted by the input identifier.
PhylogeneticTree workflow returns a phylo-genetic tree for a group of input gene or
protein in Fasta format. All BioMoby services inside the workflows are configured and
instantiated from SimpleMobyServiceAccessor actor. The PhylogeneticTree workflow is
showed in Figure 34.

SimpleMobyServiceAccessor

clustalwmultialign quicktree newicktopdf

Figure34. PhylogeneticTree workflow. Three actors encapsulating three BioMoby services are
actually instantiated from the same SimpleMobyServiceAccessor actor by configuring the service
name.

Notice: It takes some time to open a workflow composed by BioMoby service, because
the actor needs to be instantiated with metadata of the service got from remote service
registry. So internet access is required to run this kind of workflow.

9. Appendix: Actor Reference
COMAD system provides some ready to use actors summarized in Table10. User is also
supported to develop new actor as introduced in “COMAD Actor” chapter.

Table10. Ready-to-use COMAD Actors
Category Description Actor Name

CollectionComposer

CollectionReader

Data Stream Composer Import the external
data into workflow by
composing it into
data stream

CreateRootCollection

CollectionDisplay
XmlDisplay

Data Stream Renderer Render the data
stream of workflow

TraceWriter
StartLoop Loop Structure Controller Controls the loop

boundary EndLoop
Data stream Filter Filters the elements

out from data stream
Filter

Workflow Composer Encapsulate nested
workflow

CompositeCoactor

9.1. CollectionComposer
The CollectionComposer actor imports external data into COMAD workflow. The
external input data is actually losslessly converted into a data stream composed by tokens.

Ports:

 output: The output port from where the data stream flows out of the actor.

Parameters:

 Schema: The format of external data. Two choices are provided, native COMAD
or General XML.

 Collection XML: The text window to put the input data.

9.2. CollectionReader
The CollectionReader actor imports external data from a file into the COMAD workflow.
The external input data is actually losslessly converted into a data stream composed by
tokens.

Ports:

 output: The output port from where the data stream flows out of the actor.

Parameters:

 Schema: format of external data. Two choices are provided, native COMAD or
General XML.

 File: full path of the input file.

9.3. CreateRootCollection
The CreateRootCollection actor creates an empty root collection as the source data
stream of the workflow.

Ports:

 output: The output port from where the data stream flows out of the actor.

Parameters:

 Root label: label of the root collection.

9.4. CollectionDisplay
The CollectionDisplay actor renders a string representation of its input stream inside the
read scope in native COMAD format to a GUI display window.

Ports:

 input: The input port from where the data stream flows into the actor.

 output: The output port from where the data stream flows out of the actor.

Parameters:

 ReadScope: read scope path expression
 showDetails: Element IDs, and object IDs and Java classes of data items, are

included if set to true.
 showProvenance: Insertion records, deletion records, invocation dependency

records, and deleted elements are included if set to true
 stringsOnSingleLines: CR and LF characters are removed from String data values

if set to true
 remapIds: All element ids and object ids are separately mapped to a group of

integer starting from 1 if set to true
 columnsDisplayed: Width of the display in characters
 rowsDisplayed: Height of the display in characters.
 clearDisplayOn: Display will be cleared on arrival of collections with this label.

9.5. XmlDisplay
The CollectionDisplay actor renders a string representation of its input stream inside the
read scope in general XML format to a GUI display window.

Ports:

 input: The input port from where the data stream flows into the actor.
 output: The output port from where the data stream flows out of the actor.

Parameters:

 ReadScope: read scope path expression
 useDataTypesAsTags: indicate whether the name of element in XML

representation created from data token is its data type name
 columnsDisplayed: Width of the display in characters
 rowsDisplayed: Height of the display in characters.
 clearDisplayOn: Display will be cleared on arrival of collections with this label.

9.6. TraceWriter
The TranceWriter actor serializes an XML representation of its input stream to a file. The
trace file is output to the directory specified by “output directory root” parameter of
COMAD director. And the file is named as “workflowName_timeStamp_traceId.trace”.

Ports:

 input: The input port from where the data stream flows into the actor.
 output: The output port from where the data stream flows out of the actor.

Parameters:

 remapIds: All element ids and object ids are separately mapped to a group of
integer starting from 1 if set to true

9.7. StartLoop
The StartLoop actor defines the start boundary of a sub-workflow that loops over a
specified collection.

Ports:

 input: The input port from where the data stream flows into the actor.
 output: The output port from where the data stream flows out of the actor.
 loopback: The input port for the collection looped back from the EndLoop actor.

Parameters:

 ReadScope: read scope path expression
 loopCollectionLabel: The first collection with this label inside the read scope is

the loop collection. It must be the same as loopCollectionLabel set in EndLoop
actor.

9.8. EndLoop
The EndLoop actor defines the end boundary of a sub-workflow that loops over a
specified collection.

Ports:

 input: The input port from where the data stream flows into the actor.
 output: The output port from where the data stream flows out of the actor.
 loopback: The output port for the collection looped back to the StartLoop actor.

Parameters:

 ReadScope: read scope path expression
 loopCollectionLabel: The first collection with this label inside the read scope is

the loop collection. It must be the same as loopCollectionLabel set in StartLoop
actor.

 whileExpression: continue loop when it’s evaluated as true. The expression is
based on the annotation of the looped collection. The annotation is denoted as
M{annotation_name}. During evaluation, the value of the specified annotation is
used.

 maxLoopCount: the maximum loop times. The loop will stop if the max loop
number has been reached, no matter whether the “while” condition is true or not

 exitOnException: exit loop if any exception happens.

9.9. Filter
This actor filters out specified collection, data or annotation from data by using delete
decoration in the read scope or data binding path expression. The actor simply deletes all
the elements decorated with deletion tag.

 If the target deleted element is a collection
o put the target collection path as the read scope with deletion decoration
o or put path for the DeletedElement data binding port which involves the

target collection and use the deletion decoration for that collection.

 If the target deleted element is a data or annotation token
o put the path to the target data or annotation with deletion decoration

If there’s no deletion decoration in both read scope or DeletedElement data binding
expressions, an exception is thrown out.

Ports:

 input: The input port from where the data stream flows into the actor.
 output: The output port from where the data stream flows out of the actor.

Parameters:

 ReadScope: read scope path expression. Meanwhile, it could also be used to
declare the deleted collections.

 Signature: displays the signature of the actor
 DeletedElement: The optional input port data binding to declare the deleted

element.

9.10. CompositeCoactor
The CompositeCoactor actor is used to encapsulate a sub-workflow assembled from a
group of kepler actors. The director for the sub-workflow can only be SDFDirector.

The input and output port of the nested workflow are actually the input and output data
binding port of the CompositeCoactor. From these ports, the input data is bound and
prepared to fire the inside workflow and the output is written into the data stream. Please
refer to chapter “COMAD Actor” for more details about how to use this actor.

Ports:

 input: The input port from where the data stream flows into the actor.
 output: The output port from where the data stream flows out of the actor.

Parameters:

 ReadScope: read scope path expression. Meanwhile, it could also be used to
declare the deleted collections.

 Signature: displays the signature of the actor
 Depend on Firing: If it’s set true, then the dependency is generated only from the

input data of the same firing. Otherwise, the dependency is generated from all the
input data in the invocation. Please refer to “Provenance Recording” in “COMAD
Actor” chapter for more details.

	COMAD User Manual
	1. Introduction to COMAD
	2. Installing and Running COMAD
	3. Build Your First COMAD Workflow
	3.1. Step1. Open a blank workflow and choose the COMAD director
	3.2. Step2. Add CollectionComposer actor
	3.3. Step3. Add StatisticCalculator actor
	3.4. Step4. Add CollectionDisplay actor
	3.5. Step5. Run the workflow

	4. COMAD Data Stream Composition
	5. COMAD Actor
	5.1. Basic COMAD Actor Composition
	5.2. Input and Output Binding Configuration
	5.2.1. Signature
	5.2.2. Read scope
	5.2.3. Input port data binding
	5.2.4. Output port data binding

	5.3. COMAD Actor Classification
	5.3.1. AtomicCoactor
	5.3.2. CompositeCoactor
	5.3.3. Extended AtomicCoactor

	5.4. Provenance Recording

	6. COMAD Path Expression Syntax
	6.1. Path Element
	6.2. Qualifier
	6.3. Cardinality
	6.4. Decoration
	6.4.1. Life management
	6.4.1.1. Creation
	6.4.1.2. Deletion

	6.4.2. Exact type match
	6.4.3. Split of structural type

	6.5. Port Reference

	7. Type System
	7.1. Type Category
	7.1.1. System Built-in Type
	7.1.2. User-Defined Type

	7.2. Type Compatibility and Data Format conversion

	8. Demo
	8.1. Comet
	8.2. PICalculation
	8.3. MobyService

	9. Appendix: Actor Reference
	9.1. CollectionComposer
	9.2. CollectionReader
	9.3. CreateRootCollection
	9.4. CollectionDisplay
	9.5. XmlDisplay
	9.6. TraceWriter
	9.7. StartLoop
	9.8. EndLoop
	9.9. Filter
	9.10. CompositeCoactor

