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Introduction
The initial patent on entecavir expired in South Africa in 2011 

ZA 1991/07894. Current status available on: http://patentsearch.
cipc.co.za/, which should have permitted lower-cost generic 
competitors to enter the market. However, South Africa granted 
BMS three additional patents on entecavir that only expire between 
2022 and 2026. Two of these patents have lapsed-meaning BMS has 
not paid the renewal fees, and they cannot be enforced-while one 
patent covering a lower dosage form of entecavir remains in force. 
This patent is currently under litigation in India Basheer S. BMS 
Hepatitis Patent Invalidated: A Viral Effect for India? http://spicyip.
com/2013/02/bms-hepatitis-patent-invalidated-viral.html, but 
because it is in force in South Africa, generic suppliers may be 
discouraged from bringing their low-dose products to market. 

A more recent patent on entecavir has not yet been received or 
processed by the Patents Office, but it could be filed up until the end  

 
of  2014 Patent number: WO/2013/177672. Current status available 
on pa-tentscope.wipo.int. This patent covers the manufacturing 
process of entecavir, and is an example of patent evergreening 
where companies file patents on minor changes to an existing drug 
to maintain patent protection and block competition. The same 
patent was recently overturned in the United States for failing 
to meet the criteria of inventive step. However, in South Africa, 
since no examination of patent applications occurs, if the patent is 
filed, it is likely to be granted to BMS. So long as BMS maintains a 
monopoly on entecavir in South Africa, the price is likely to remain 
high, and entecavir will remain out of reach for those who need it. 
But the crystalline forms of entecavir and its performances are not 
researched and reported in the above-mentioned patent. 

The review relates to analogues of 2′-cyclopentyl 
deoxyguanosine, especially relates to entecavir, its preparation and 
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Abstract 

Entecavir is an oral antiviral drug used in the treatment of hepatitis B infection. Entecavir is a guanosine nucleoside analogue 
with selective activity against hepatitis B virus (HBV), which inhibits reverse transcription, Hepatitis B virus (HBV) is highly endemic 
in South Africa and across sub-Saharan Africa, where around 8% of people are chronically infected, and rates of HBV-related liver 
cancer are some of the highest in the world. Globally, viral hepatitis causes approximately 1.3 million deaths every year-more than 
either malaria or tuberculosis-with around 240 million people chronically infected with HBV1. The currently available anti-HBV 
drugs show potent antiviral activity in patients with chronic hepatitis B; however, the resistance and cross-resistance to the drugs is 
a major obstacle in long-term treatment. Many studies have been conducted to understand the molecular basis of drug resistance, 
and the mechanistic characterization and molecular modeling of anti-HBV drugs complexed with HBV RT have been reported. 

Although the three-dimensional X-ray structure of HBV polymerase is not available, its homology model has been reported 
using the X-ray structure of HIV RT as a template [1-5]. Even though the homology models may not be accurate due to the low 
sequence homology between the overall HIV and HBV polymerase, the sequence conservation between the RT domains of HIV and 
HBV polymerase enables molecular modeling of HBV RT [6]. In particular, the residues around the active site that are responsible 
for recognizing the template-primer or an incoming nucleoside triphosphate are highly conserved. Nucleoside analogue HBV 
polymerase inhibitors cause chain termination after incorporation into the growing chain in the active site of HBV polymerase and 
consequently inhibit viral reverse transcriptase. Thus, the HBV homology model structure based on the crystal structure of HIV 
polymerase serves as a useful guide for understanding the molecular basis of HBV resistance to drugs.

http://www.lupinepublishers.com/
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the pharmaceutical composition and uses therefore this method 
was capable to detect Entecavir and its diastereomeric impurities 
at a level below 0.009% with respect to test concentration of 
500μgml-1 for a 20μL injection volume. The method has shown 
good, consistent recoveries for diastereomeric impurities (95-
105%). The test solution was found to be stable in the diluent for 
48h. The drug was subjected to stress conditions. The mass balance 
was found close to 99.5%. Entecavir also helps to prevent the 
hepatitis B virus from multiplying and infecting new liver cells, is 
also indicated for the treatment of chronic hepatitis B in adults with 
HIV/AIDS infection.

Method Details

C18 stationary phase (150 x 4.6mm, 3.5microns particles) with 
the economical and simple mobile phase combination delivered 
in an isocratic mode at a flow rate of 1.0mlmin-1 at 254nm. In 
the developed method, the resolution between Entecavir and 
its diastereomeric impurities was found to be greater than 2.0. 
Regression analysis shows an r2 value (correlation coefficient) 
greater than 0.999 for Entecavir and for its diastereomeric 
impurities

Discussion

The chemical name for entecavir is 2-amino-I,9-
dihydro-9-[(1S,3R,4S)-4-hydroxy-3-(hydroxymethyl)-2-
methylenecyclopentyl)-6H-purin-6-one, monohydrate. Its 
molecular formula is C12H15N5O3.H2O, which corresponds to a 
molecular weight of 295.3 (Figure 1). Entecavir, BMS-200475, 

SQ-34676(1S,3R,4S)-9-[4-Hydroxy-3-(hydroxymethyl)-2-
methylenecyclopentyl] guanine CAS-42217-69-4, 209216-23-9 
(monohydrate). Anti-Hepatitis Virus Drugs, Anti-Infective Therapy, 
Antiviral Drugs -Phase III This research article describes a simple, 
sensitive and cost effective mobile phase method for determination/
quantitation of diastereomeric impurities of Entecavir in drug 
substances as well as in drug products. Comparison of different 
techniques. The work also includes the method development and 
the complete validation [7] as per ICH guidelines. Hitherto; there is 
no article for the quantification and determination of diastereomeric 
impurities of Entecavir in drug substances and drug products. This 
is a novel and sensitive method for the diastereomeric impurities in 
Entecavir using HPLC (Figure 2).

Figure 1

Figure 2

Patent information

Bristol-Myers Squibb was the original patent holder for 
Baraclude, the brand name of entecavir in the US and Canada. The 
drug patent expiration for Baraclude was in 2015. On August 26, 
2014, Teva Pharmaceuticals USA gained FDA approval for generic 

equivalents of Baraclude 0.5 mg and 1 mg tablets; Hetero Labs 
received such approval on August 21, 2015; and Aurobindo Pharma 
on August 26, 2015. Chronic hepatitis B virus infection is one of 
the most severe liver diseases in morbidity and death rate in the 
worldwide range. At present, pharmaceuticals for treating chronic 
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hepatitis B (CHB) virus infection are classified to interferon α and 
nucleoside/nucleotide analogue, i.e. Lamivudine and Adefovir. 
However, these pharmaceuticals cannot meet needs for doctors and 
patients in treating chronic hepatitis B virus infection because of 
their respective limitation. 

Entecavir (ETV) is referred to as 2′-cyclopentyl deoxyguanosine 
(BMS2000475) which belongs to analogues of Guanine nucleotide 
and is phosphorylated to form an active triple phosphate in vivo. 
The triple phosphate of entecavir inhibits HBV polymerase by 
competition with 2′-deoxyguanosine-5′-triphosphate as a nature 
substrate of HBV polymerase, so as to achieve the purpose of 
effectively treating chronic hepatitis B virus infection and have strong 
anti-HBV effects. Entecavir, [1S-(1α,3α,4β)]-2-amino-1,9-dihydro-
9-[4-hydroxy-3-hydroxymethyl]-2-methylenecyclopentyl]-6H-
purin-6-one, monohydrate, and has the molecular formula of 

C12H15N5O3.H2O and the molecular weight of 295.3. Its structural 
formula is as follows:

Entecavir was successfully developed by Bristol-Myers Squibb 
Co. of USA first and the trademark of the product formulation is 
Baraclude™, including two types of formulations of tablet and oral 
solution having 0.5mg and 1mg of dosage. Chinese publication 
No. CN1310999 made by COLONNO, Richard J, et al discloses a 
low amount of entecavir and uses of the composition containing 
entecavir in combination with other pharmaceutically active 
substances for treating hepatitis B virus infection, however, the 
entecavir is non-crystal. In addition, its oral formulations such 
as tablet and capsule are made by a boiling granulating process. 
The process is too complicated to control quality of products 
during humidity heat treatment even though ensuring uniform 
distribution of the active ingredients (Figure 3).

Figure 3
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Synthesis of BMS-200475 (EN: 182634) The regioselective 
reaction of cyclopentadiene (I) and sodium (1) or commercial 
sodium cyclopentadienide (II) (2, 3) with benzyl chloromethyl ether 
(III) by means of the chiral catalyst (-)-diisopinocampheylborane 
in THF, followed by hydroxylation with H2O2/NaOH, gives 
(1S-trans)-2-(benzyloxymethyl)-3-cyclopenten-1-ol (IV), which 
is regioselectively epoxidized with tert-butyl hydroperoxide 
and vanadylacetylacetonate in 2,2,4-trimethylpentane, yielding 
[1S-(1alpha,2alpha,3beta,5alpha)-2-(benzyloxymethyl)-6-
oxabicyclo[3.1.0]hexan-3-ol (V). The protection of (V) with benzyl 
bromide and NaH affords the corresponding ether (VI), which is 
condensed with 6-O-benzylguanine (VII) by means of LiH in DMF 
to give the guanine derivative (VIII). The protection of the amino 
group of (VIII) with 4-methoxyphenyl(diphenyl)chloromethane 
(IX), TEA and DMAP in dichloromethane gives intermediate (X), 
which is oxidized at the free hydroxyl group with methylphosphonic 
acid, DCC and oxalic acid in DMSO (1) or Dess Martin periodinane 
in dichloromethane (2, 3), yielding the cyclopentanone derivative 
(XI). 

The reaction of (XI) with (i) Zn/TiCl4/CH2Br2 complex in THF/
CH2Cl2 (1), (ii) activated Zn/PbCl2/CH2I2/TiCl4 in THF/CH2Cl2 (2), 
(iii) Nysted reagent/TiCl4 in THF/CH2Cl2 (2, 3) or (iv) Tebbe reagent 
in toluene (2) affords the corresponding methylene derivative (XII), 
which is partially deprotected with 3N HCl in hot THF, providing 
the dibenzylated compound (XI). Finally, this compound is 
treated with BCl3 in dichloromethane (1-3). (Scheme 18263401a) 
Description Hydrate, m.p. >220 ᴼC, alpha (22,D) +34?(c 0.3, water) 
(1); monohydrate, white crystalline solid, m.p. 234-6 ᴼC (decomp.) 
for the bulk sample and m.p. 255 ᴼC (decomp.) for an analytical 
sample recrystallized from water, alpha(D) +33.2?(c 0.3, water) 
(2); alpha(D) +35.0?(c 0.38, water) (3). Manufacturer Bristol-Myers 
Squibb Co. (US). References1. Zahler R, Slusarchyk WA (Bristol-
Myers Squibb Co). Hydroxymethyl (methylenecyclopentyl) purines 
and pyrimidines. EP 481754, JP 92282373, US 5206244. 2. Bisacchi 
GS, Sundeen JE(Bristol-Myers Squibb Co). 

Improved process for preparing the antiviral agent 
[1S-(1alpha,3alpha,4beta)]-2-amino-1,9-dihydro-9-[4-hydroxy-
3-(hydroxymethyl)-2-methylenecyclopentyl]-6H-purin-6-one. 
WO 9809964. 3. Bisacchi GS, Chao ST, Bachard C, et al. BMS-
200475, a novel carboxylic 2’-deoxyguanosine analog with potent 
and selective anti-hepatitis B virus activity in vitro. Bioorged 
Chem Lett 1997, 7: 127-32.EP 0481754; JP 1992282373; US 
5206244, Zahler R, Slusarchyk WA (Bristol-Myers Squibb Co.), 
Hydroxymethyl(methylenecyclopentyl)purines and pyrimidines. 
EP 0481754, JP 1992282373, US 5206244, EP 0481754, JP 
1992282373, US 5206244,():WO 9809964

Preparation Method

a)  The reaction steps: l is prepared with a short fractionating 
column (filler may be added) the atmospheric distillation unit, the 
receiving flask was added anhydrous calcium chloride, and placed 
in an ice-water bath polymerization (monomer cyclopentadiene rt 
shall cryopreservation) and tail have to take over the drying tower. 

Dicyclopentadiene was added to the three-neck flask, the system 
micro nitrogen, warmed slowly with stirring to 180 °C, holding the 
distillation gas inlet temperature does not exceed 42°C, to give a 
final monomer cyclopentadiene (cryopreservation). 

b)  Preparation 2: was added to the kettle in dry xylene, 
sodium metal to surface oxidation, micro nitrogen, warmed to and 
stirred at 120~ 150 °C, the sodium was dissolved, with vigorous 
stirring, sodium dispersed into sodium sand, stirring was stopped, 
the system was returned to room temperature, sodium sand cured, 
removing surface xylene, replacement with a suitable amount of 
anhydrous THF three times, finally dry THF was added protection, 
backup. In the micro nitrogen, tetrahydrofuran ice-water bath 
- Sodium sand cooling 0~10 °C, the prepared cyclopentadiene 
monomer was slowly added dropwise to a tetrahydrofuran - 
sodium sand system, control the temperature not exceeding 10 
°C, After the dropwise addition, the ice-water bath was removed, 
allowed to warm to rt naturally and stirred for about 3 hours, and 
sediment sodium is consumed, to give a final solution of sodium 
cyclopentadiene reddish. 

c)  Preparation 3: The dimethylphenyl chlorosilane and 
anhydrous tetrahydrofuran were added to the reaction kettle, micro 
under N2, and the system was cooled to -70 °C or less, dropwise 
addition of 2, was added dropwise to control the temperature 
- below 70 °C, addition was complete the mixture was stirred at 
-70 °C or less incubated for about 3 hours, TLC the reaction was 
complete, was naturally warmed to 0 °C, was slowly added to ice 
water, stirred, allowed to stand, and the organic phase , washed with 
saturated sodium bicarbonate solution and extracted with n-hexane 
with, dried over anhydrous sodium sulfate, and concentrated under 
reduced pressure at 65 °C, the final 3 to give a dark yellow oil. 

d)  The preparation of 4: 3 and the reactor was added n-hexane 
cooled to -10 °C, quickly dichloroacetyl chloride dropwise wherein 
continued stirring, triethylamine and a mixture of n-hexane was 
slowly added to the system dropwise, the temperature was kept 
at 5 °C or less, addition was complete, the reaction at 0~4°C for 
about 4 hours, then warmed to room temperature naturally 8~10 
hours (overnight). Completion of the reaction by TLC. Water was 
added, stirred for 30 minutes at room temperature, standing layer, 
extracted with hexane, the organic layers were combined, washed 
to neutrality with saturated sodium bicarbonate, saturated brine, 
dried over anhydrous sodium sulfate, filtered and the filtrate was 
concentrated under reduced pressure to give 4 dark oil. 

e)  Prepared at room temperature for 4 to 5, methanol, water 
and triethylamine were added to the reaction vessel, stir. Warmed 
to 75-80 °C, the reaction 4~5 hours, the reaction was complete, the 
system was cooled to below 10 °C, potassium carbonate was added, 
stirred for 30 minutes, was slowly added sodium borohydride (note 
the paste), slowly raised It was stirred at room temperature for 8-10 
hours to complete the reaction. At this time, the reaction system PH 
= 9-10. Water was added to the system and quench the reaction, 
stirred for 0.5 hours, the system was adjusted with concentrated 
hydrochloric acid to PH = 2-3, and extracted with ethylacetate, the 
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organic phase was separated, washed with saturated brine, and the 
combined organic phases are dried over anhydrous sodium sulfate, 
filtered, and concentrated to give a viscous black 5.

f)  Preparation 6: 5, respectively, and absolute ethanol was 
added L-amino purified autoclave, stirring chamber for about 1 
hour, the crystal precipitation temperature was raised to 50-60°C, 
stirred for 5-6 hours, cooled to room temperature stirred for about 
3 hours, filtered, the filter cake was washed with small amount of 
absolute ethanol, the filter cake was dried under reduced pressure 
at 55°C for 10 hours to give 5 as a light brown powdery solid. (HPLC 
San 93%). 

g)  Preparation 7: addition of methanol at room temperature 
and at 6, to ice-salt bath and dry reaction vessel, was added dropwise 
concentrated sulfuric acid, controlling the temperature below 5°C. 
After the addition, naturally warmed to room temperature (about 
20-30°C), reaction was stirred for 10 hours. TLC monitored the 
reaction. After completion of the reaction, methanol was distilled 
off under reduced pressure and temperature (process, strict 
control of the degree of vacuum and temperature, faster), After 
evaporation to dryness, cooled to room temperature. After addition 
of ethyl acetate and water, stirred for 5 minutes, and extracted with 
a separatory funnel, the lower water layer extracted with ethyl 
acetate, (aqueous layer was put to close the wastewater collection 
tank) The organic layers were combined, washed with saturated 
aqueous sodium bicarbonate solution to adjust PH to 8-9. If the 
emulsion was filtered with a Buchner funnel, (add a layer of celite 
on the funnel), and the filtrate fraction with water to a separatory 
funnel, the upper organic phase was washed twice with saturated 
brine, dried over anhydrous sodium sulfate, filtered solid sodium 
sulfate was removed. The organic phase was concentrated under 
reduced pressure and a temperature of <50°C, to give black product 
was 7. 

h)  Preparation 8: 7 at room temperature, methanol and water 
were added to the reaction vessel, stir. Warmed to 75-80°C, 3 to 
4 hours of reaction, the reaction was complete, the system was 
cooled to below 10°C, slowly adding a reducing agent was slowly 
warmed to room temperature stirred for 6~7 hours to complete 
the reaction. Water was added to the system, the reaction was 
quenched, stirred for 0.5 hours, the system was adjusted with 
concentrated hydrochloric acid to PH = 5~6, extracted with 
ethylacetate, the organic phase was separated, washed with water, 
brine, combined organic phases were dried over anhydrous over 
sodium sulfate, filtered, and concentrated to give a viscous reddish 
8. 

i)  Preparation 9 are prepared under nitrogen, was added to 
the reaction vessel and dried in glacial acetic acid and 8, stirred 
and dissolved, was added boron trifluoride acetic acid, heating 
up the reaction 5~15 hours, the solution turned black, the 
reaction completion, was cooled to room temperature. Methanol 
was added, the ice bath was added to the reaction flask with 5N 
potassium hydroxide solution adjusted to PH 7~9, in this case 
yellow emulsion was then slowly added dropwise 30% hydrogen 

peroxide solution, the addition, the ice bath was removed, the 
under nitrogen, heated up to 70°C incubation for 12 hours. After 
completion of the reaction, cooled to room temperature, the batch 
dropwise addition of saturated sodium bisulfite solution. After the 
addition was stirred for half an hour, then the temperature of the 
methanol under reduced pressure to recover about 60°C (note the 
paste, distillation rate is not too fast, methanol and concentrated 
after a large number of foam generator) the residue was cooled to 
room temperature, cooled with an ice-salt bath to 0°C, the mixture 
was adjusted to PH 2 with concentrated hydrochloric acid, as a 
yellow liquid. Ethyl acetate was added to the reaction flask, stirred 
for 5 minutes, extracted with ethyl acetate (recyclable apply), if the 
emulsion serious, can add a little acetone, and the organic layer was 
dried over anhydrous sodium sulfate, and concentrated to obtain a 
pale yellow oily liquid 9.

j)  9 ketal of Preparation 10 to give 10 is formed under the 
action of a ketone. 

k)  Prepared at room temperature was added sequentially 3A 
molecular sieves ll dry dichloromethane and dried to a reaction 
vessel, under nitrogen, the reaction solution was cooled to about 
-25 °C, was added dropwise (_) - DIPT, dropwise , stirred for 
20 minutes at the reaction temperature of about -25 °C. Then a 
solution of Ti (i-oft04, dropwise, stirred at the reaction temperature 
of about -25 °C 20 min; 10 and then added dropwise a mixed 
solution of dichloromethane, dropwise, the reaction was stirred at 
temperature of about _25 °C 20 minutes; TBHP solution was then 
added dropwise, dropwise, stirring was continued at temperature 
of about _25 °C the reaction, the reaction is monitored by TLC 
developing solvent = petroleum ether: ethyl acetate = 2:1 (about 
4 hours the end of the reaction, this. reaction requires strictly 
anhydrous, or incomplete reaction) after completion of the reaction, 
aqueous sodium bisulfate was added dropwise, while the internal 
temperature does not exceed -10 °C, addition was complete, remove 
the cooling bath was allowed to warm to room temperature Q0-25 
°C ) The reaction was stirred for 1 hour. Filtration, (add a layer of 
celite on the funnel), and the filtrate was added water and, after 
stirring uniformly vibrating, extracted, the aqueous layer extracted 
twice with dichloromethane top organic phases are combined, 
washed successively with saturated aqueous sodium bicarbonate 
and saturated brine washed twice with water, the organic phase is 
extracted, dried over anhydrous sodium sulfate, filtered to remove 
solid sodium sulfate. Under reduced pressure to 45<°C temperature 
organic phase was concentrated to give 25g of a pale brown oil 11. 

l)  Preparation of 1, 12: successively added at room 
temperature to the kettle amino-6-benzyloxy guanine, lithium 
hydroxide monohydrate of DMF and, under nitrogen protection, 
was heated to 90°C, reaction was stirred for about 16 hours the end 
of the reaction. TLC monitored the reaction. Developing solvent = 
petroleum ether: ethyl acetate = 2: 3. After addition of ethyl acetate 
and saturated brine, stirred for 5 minutes, filtered (diatomaceous 
add a layer on the funnel) the filtrate was transferred to a separatory 
funnel and extracted the aqueous layer extracted with ethyl acetate 
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three times below, (the aqueous layer The organic layers were 
combined waste water collection tank placed close), the upper 
organic phase was successively washed twice with 50% saturated 
aqueous citric acid, washed twice with saturated brine, the upper 
organic phase was dried over anhydrous sodium sulfate, filtered to 
remove solids sodium. Concentration of the organic temperatures 
<65 °C, to give brown gum, a crude product 12. Was used directly 
in the next reaction. 

m)  At room temperature for 13 preparation was added to 
the kettle in dry dichloromethane, into nitrogen, start stirring. 
12 was added, the whole solution was heated to micro (about 
30-32 °C). Under nitrogen, at ice-salt bath was added pyridinium 
p-toluenesulfonate (PPTS), stirring for 5 minutes the addition was 
complete, the temperature controlled at 0 °C, was added dropwise 
triethyl orthoformate, addition was complete, the ice bath removed 
the reaction was stirred for 3 hours with warm water temperature 
controlled at 25 °C. The reaction was monitored by TLC, developing 
solvent = petroleum ether: ethyl acetate = 2:1. After completion 
of the reaction, saturated sodium carbonate solution was slowly 
added, addition was complete the mixture was stirred at 20-25 
°C for half an hour, then added to a separatory funnel and the 
stationary layers were separated and the lower organic phase was 
separated; the upper aqueous phase, then with dichloromethane 
extraction time, the upper aqueous phase into the collection tank. 

The combined lower organic phases were then washed twice 

with water, the lower organic phase was dried over anhydrous 
sodium sulfate, and sodium sulfate to remove solids. The organic 
phase was concentrated to a temperature ^65 °C, and then 
evacuated for 2 hours to give a viscous oil. Under nitrogen above oil 
was transferred to a 500ml four-necked flask, stirred and dissolved 
after acetic anhydride was added, together with acetic acid, an anti- 
oxidant (BHT) I grains, then dried over anhydrous oxygen-free state, 
the incubation was heated to 118-122 °C for about 30 hours. In the 
course of the reaction incubation, the solution from dark brown to 
black, TLC the reaction was monitored, after the completion of the 
reaction, are graded cool. Under nitrogen, when the temperature 
dropped to 65 °C, diluted with water and ethyl acetate were added, 
the ethyl acetate layer separated, washed with brine, dried over 
anhydrous sodium sulfate, pouring suspended solids, concentrated, 
the solid washed with cold ethyl acetate, dried 13 as a white solid. 
Preparation of [eta], entecavir monohydrate 13, was added 1: 1 
THF - methanol, hydrochloric acid was added dropwise 2Ν The 
reaction was stirred until the starting material was 4.5h at 60 °C, 
cooled to room temperature, diluted with water and ethyl acetate 
were added, with vigorous stirring PH was adjusted with iN sodium 
hydroxide to 7.0, was allowed to stand, a white solid in the organic 
layer, two phases were separated, the aqueous phase was extracted 
with ethyl acetate, the combined organic phases were washed with 
brine, dried over anhydrous sodium sulfate, pouring suspended 
solids, concentrated solid was washed with cold ethyl acetate, and 
dried to give entecavir monohydrate as a white solid (Figure 4).

Figure 4

As shown in Scheme 1, compound 3 was prepared as a single 
diastereomer from 3kg of 92% ee (S)-(+)-carvone via a two-
step transformation including a stereoselective epoxidation and 
chlorohydrin formation from the newly formed epoxide. Tosylation 
of the sec-hydroxyl group of compound 3 afforded 4.25 kg of product 
4 (60% yield over 3 steps) in 100% ee after recrystallization 
from MeOH. This ultra-pure intermediate was then reacted with 

mCPBA to afford epoxide 5, which was converted into diol 6 after 
treatment with dilute aqueous sulfuric acid. Protection of the diol 
with dimethoxypropane afforded 3.4 kg of intermediate 7 (67% 
over 3 steps).This product was treated with sodium methoxide 
in methanol to initially provide the cis-substituted Favorskii 
rearrangement product 8a, which upon isomerization gave the 
thermodynamically more stable cyclopentanecarboxylate 8 under 
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the reaction conditions, though the epimerization was incomplete 
even after being stirred for 24 hours (50 g scale) at room 
temperature. Fortunately, the problem was solved by using methyl 
t-butyl ether (MTBE)/methanol as the solvent and the reaction was 
complete in less than 17 hours (50g scale).

Molecular Modeling Study of Drug-Resistant HBV

Molecular dynamics studies on the homology model structure 
of HBV can provide useful information regarding mutations 
associated with resistance to inhibitors of HBV polymerase. Daga et 
al. [8] built a stereochemically significant homology model of HBV 
polymerase and suggested a significant role for conserved Lys 32 
residue in HBV RT, which corresponds to Lys 65 in HIV RT, in binding 
of nucleotides and known HBV RT inhibitors. Their homology 
model of HBV polymerase had two main differences from previous 
reports: They aligned the sequence by using the proper match of a 
conserved Lys residue in HIV-1 RT, which has important salt bridge 
interactions with the γ-phosphate of the incoming nucleotide.

Secondly, they used a different template structure of HIV-1 RT 
(PDB code: 1T05) that was a higher resolution crystal structure 
compared to the previously. sed template (PDB code: 1RTD). 
Based on this modeling result, they provided an explanation for 
the various resistant mutants of HBV polymerase and successfully 
predicted binding conformations of known HBV inhibitors [8]. Das 
K et al. [2] constructed a three-dimensional homology model of the 
catalytic core of HBV polymerase based on the crystal structure of 
HIV-1 RT. Molecular modeling studies using the HBV polymerase 
homology model suggest that steric hindrance between the mutant 
amino acid side chain and lamivudine or emtricitabine, anti-HBV-
drug, could account for the resistance phenotype. Specifically, steric 
conflict between the Ile or Val at position rt204 in HBV polymerase 
and the sulfur atom in the oxathiolane ring of lamivudine and 
emtricitabine is proposed to account for the resistance observed 
with rtM204I or rtM204V mutation. The effects of the rtL180M 
mutation, which also occurs near the HBV polymerase active site, 
appeared to be less direct, potentially involving rearrangement of 
the deoxynucleoside triphosphate-binding pocket residues. Sharon 
[5] constructed a homology model structure of HBV polymerase, 
which is used for minimization, conformational search and induced 
fit docking followed by binding energy calculation for wild-type and 
mutant HBV polymerases (rtL180M, rtM204V, rtM204I, rtL180M + 
rtM204V, rtL180M + rtM204I). Their studies suggest a significant 
correlation between the fold resistance and the binding affinity of 
five anti-HBV agents: lamivudine, adefovir, entecavir, telbivudine 
and clevudine. Also, they analyzed different binding modes for 
synthetic nucleoside analogue drugs as well as natural nucleosides. 

Although their studies may not fully explain the difference 
of quantitative binding affinity, they showed detailed resistance 
mechanisms for anti-HBV drugs against wild-type and mutant 
HBV. Adefovir is active against wild-type and lamivudine-resistant 
strains of HBV [9]. In contrast to lamivudine therapy, adefovir is 
associated with delayed and uncommon selection of drug-resistant 

viruses [10]. Long-term treatment with adefovir dipivoxil leads to 
the rtN236T mutation, which displays reduced susceptibility to 
adefovir but remains sensitive to lamivudine [11]. Yadav V et al. 
[12] presented the molecular basis of the mechanism of adefovir-
diphosphate against lamivudineresistant mutants and its decrease 
in susceptibility for rtN236T HBV polymerase mutants. These 
molecular dynamics studies demonstrated that the rtN236T HBV 
polymerase mutation does not affect the binding affinity of the 
natural substrate (dATP), but it decreases the binding affinity of 
adefovirdiphosphate toward the rtN236T HBV polymerase. 

The lamivudine-resistant mutations, rtM204V and rtM204I, 
result in increased vanderwaals contacts between adefovir-
diphosphate and the mutated residues, which accounts for the 
better binding affinity of adefovir-diphosphate toward these 
mutants. The second lamivudine-related mutation, rtL180M, also 
results in increased van der Waals interactions between adefovir-
diphosphate and the final residue of the primer strand, which 
accounts for the better binding affinity of adefovir-diphosphate 
in these mutants. Warner et al. [1] determined the prevalence 
of rtL80V/I mutation in lamivudine-resistant HBV isolates and 
characterized the in vitro phenotype of the mutants. Although 
L80I increases sensitivity to lamivudine and imparts a replication 
defect, it enhances the in vitro replication of lamivudine-resistant 
(rtM204I) HBV. 

Molecular modeling revealed that Leu 80 does not interact 
directly with the enzyme’s substrates. Molecular models of HBV 
reverse transcriptase showed that, although Leu 80 is located 
distal to the enzyme’s dNTP binding pocket, substitution of 
isoleucine for leucine at this site partially restores replication 
efficiency by sufficiently changing the overall spatial alignment of 
other residues that are important for catalysis. These results imply 
that the presence of rtL80I decreases the enzyme’s, affinity for 
both dNTPs and lamivudine triphosphate and that the decrease in 
affinity for lamivudine triphosphate is greater than the decrease in 
affinity for the natural substrate, dCTP. As mentioned above, using 
the homology model structure of HBV polymerase, the amino acid 
changes resulting from mutations that give antiviral resistance can 
be mapped to functional regions to provide a better understanding 
of the molecular mechanism of resistance [2,6]. The HBV polymerase 
consists of four different domains: terminal protein, a space region, 
a catalytic RT domain and RNase H domain. We constructed and 
refined the model structure of HBV RT based on the homology to 
HIV-1 RT according to the reported method [8] (Figure 1). The 
ribbon diagram of homology model structure of HBV RT shows the 
location of the major mutations that confer resistance to clinically 
available six drugs. The HBV RT model structure was constructed 
and refined as previously reported [8]. HBV RT consists of three 
sub-domains: fingers (amino acid 1 to 49 and 90 to 172, in green), 
palm (amino acid 50 to 89 and 173 to 267, in cyan), and thumb 
(amino acid 268 to 351, in yellow). The locations of the mutations 
are indicated with the sphere model (Figures 5 & 6).
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Figure 5

Figure 6

Conclusion
 Treatment for chronic hepatitis B patients depends on 

anti-HBV drugs. Even though the currently approved anti-HBV 
drugs, nucleos(t)ide analogues, show potent and fast antiviral 
response, several problems remain to be solved. These include the 
development of resistance and the side effects such as myopathy, 
which is induced by mitochondrial damage. Based on advances in 
the development of antiviral agents along with newly discovered 
drug candidates and combination therapy, resistance should not be 
a great concern in the near future. However, combination therapy 
for effective control of HBV requires the development of novel 
drugs that have different mechanisms of action. The mitochondrial 
damage is mainly due to the high affinity of nucleos(t)ide RT 
inhibitors for mitochondrial DNA polymerase gamma. 

Therefore, alleviation of side effects should be considered in 
the development of future nucleos (t)ide drugs. In this regard, the 
fine crystal structure of polymerase gamma was reported recently 

[13,14]. The elucidation of the polymerase gamma structure 
establishes a foundation for understanding the molecular basis 
of the toxicity of anti-retroviral drugs targeting HBV and HIV and 
the cause of cellular toxicity induced by some antiviral nucleoside 
analogs [15-132]. Eventually, these fundamental studies in 
conjunction with advanced drug development tools will provide 
valuable information for the development of novel drugs without 
side effects. New process of Entecavir well defined in patent 
EP2488522.
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