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ABSTRACT

It is increasingly common to combine Microarray
and Quantitative Trait Loci data to aid the search for
candidate genes responsible for phenotypic varia-
tion. Workflows provide a means of systematically
processing these large datasets and also represent
a framework for the re-use and the explicit declara-
tion of experimental methods. In this article, we
highlight the issues facing the manual analysis of
microarray and QTL data for the discovery of
candidate genes underlying complex phenotypes.
We show how automated approaches provide a
systematic means to investigate genotype–pheno-
type correlations. This methodology was applied to
a use case of resistance to African trypanosomiasis
in the mouse. Pathways represented in the results
identified Daxx as one of the candidate genes within
the Tir1 QTL region. Subsequent re-sequencing in
Daxx identified a deletion of an amino acid, identi-
fied in susceptible mouse strains, in the Daxx–p53
protein-binding region. This supports recent experi-
mental evidence that apoptosis could be playing a
role in the trypanosomiasis resistance phenotype.
Workflows developed in this investigation, including
a guide to loading and executing them with
example data, are available at http://workflows.
mygrid.org.uk/repository/myGrid/PaulFisher/.

INTRODUCTION

The process of linking genotype and phenotype plays a
crucial role in understanding the biological processes that
contribute to overall cellular, tissue and organism
responses, particularly when under a disease state (1,2).

The first and classic example was the discovery of the
Huntington gene (3), which enabled predictive tests for
age of onset and severity of disease to be established. Since
then researchers have discovered single-gene lesions for a
large number of simple Mendelian traits. It has proved
much more difficult, however, to discover genes under-
lying genetically complex traits which have continuous
rather than discrete variation in the phenotype (4), since
continuous variation is generally a product of small
contributions from multiple genes. Over 2000 Quantative
Trait Loci (QTL) have been mapped in mice and rats, yet
<1% of these have been characterized at the molecular
level (5).
The DNA polymorphism(s) underlying a QTL may be

in an exon, which subsequently changes the primary
amino acid structure of the gene. In other cases the
polymorphism may lie in a regulatory region, possibly
several kilobases from the transcription start site, altering
the regulation of gene expression or splicing. Tens to
hundreds of genes may be under even well-defined QTL.
It is therefore vital that the identification, prioritization
and functional testing of the polymorphisms identified in
relation to the Quantitative Trait gene (QTg) and
phenotype are carried out systematically without bias
introduced from prior assumptions about candidate genes
(4). With the advent of microarrays, researchers are able
to directly examine the expression of all genes under a
QTL and hence examine the effect of regulatory variation
directly. This has made it possible to use expert knowledge
of the pathways underlying the phenotype to identify a
limited number of strong candidate genes (6).
The scale of data being generated by such high-

throughput experiments has led some investigators to
follow a hypothesis-driven approach (7), where the triage
and selection of candidate genes is based on some prior
knowledge or assumption. For example de Buhr et al. (6)
selected candidate genes based on their known
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involvement in the immune response. Although these
techniques for candidate gene identification can detect
QTg, they run the risk of overlooking genes that have less
obvious associations with the phenotype (8).
The complexity of multigenic traits can also lead to

problems when attempting to identify the varied processes
involved in the phenotype. For example numerous
processes can be involved in the control of parasitic
infection, including the ability of the host to kill the
parasite, mounting an appropriate immune response, or
control of host or parasite induced damage. By making
selections based on prior assumptions of what processes
may be involved, the pathways, and therefore genes, that
may actually be involved in the phenotype can be
overlooked or missed entirely.
In order to investigate whether such bias could be found

within current analysis techniques, we conducted a review
of the literature on combined QTL and microarray
analyses. This detailed review is available within the
Supplementary Data (Supplementray Table 2). Results
from this review enabled us to identify the specific issues
facing the manual analysis of microarray and QTL data,
including the selection of candidate genes and pathways.
These are listed below:

(i) Premature filtering of datasets to reduce the amount
of information requiring investigation

(ii) Predominantly hypothesis-driven investigations
instead of a complementary hypothesis and data-
driven analysis

(iii) User bias introduced on datasets and results,
leading to single-sided, expert-driven hypotheses

(iv) Implicit data analysis methodologies
(v) Constant flux of data resources and software

interfaces hinder reproducing searches and
re-analysis of data

(vi) Error proliferation from any of the listed issues

A further complication is that the use of ad hoc methods
for candidate gene identification are inherently difficult to
replicate and are compounded by poor documentation of
the methods used to generate and capture the data from
such investigations in published literature (9). An example
is the widespread use of ‘link integration’ (10) in
bioinformatics. This process of hyperlinking through any
number of data resources further exacerbates the problem
of capturing the methods used for obtaining in silico
results since it is often difficult to identify the essential data
in the chain of hyperlinked resources.
With an ever increasing number of institutes offering

programmatic access to their resources in the form of web
services (11), however, experiments previously conducted
manually can now be replaced by automated experiments,
capable of processing a far greater volume of data in a
systematic and explicit manner. The integration of web
services into an automated analysis pipeline or workflow
enables the replication of the original chain of processes
used in the traditional manual analyses. This is accom-
plished by connecting the outputs from one such service
into the input of another in a consecutive manner. By
replicating the original investigation methods in the form

of workflows, we are now able to pass data directly from
one service to the next without the need for any
interaction from researchers. This enables us to process
the data in a much more efficient, reliable, un-biased and
explicit manner.

In this article we propose a methodology that revises the
known pathways that intersect a QTL and those derived
from a set of differentially expressed genes. This metho-
dology has been implemented systematically through the
use of web services and workflows and has been applied to
a use case in the mouse, Mus musculus: resistance to
African trypanosomiasis. For the purpose of implement-
ing this systematic pathway-driven approach, we have
adopted a service-based infrastructure coupled with
workflow technology. We chose to use the Taverna
workflow workbench (12) for the means of constructing
these workflows. This software was chosen based on
previous experience with this workbench within the
Manchester based research group. Although this work-
bench offers many features for workflow construction, the
workflows discussed in this article may be constructed
using any of the well-established workflow workbenches
currently available. This investigation looks at the extent
to which workflows will be able to reduce the issues
labelled (i) to (vi) listed above, with respect to the manual
analysis of gene expression and QTL data.

African trypanosomiasis as a motivation for a systematic
approach to candidate gene identification

African trypanosomiasis (sleeping sickness) is caused by
Trypanosoma spp. parasites. Human sleeping sickness is
caused by sub species of T. brucei. Trypanosomiasis of
cattle is caused by T. congolense and T. vivax, and is a
major restriction on cattle production in sub-Saharan
Africa (13). With no vaccine available, and with heavy
expenditure on trypanocidal and vector control, trypano-
somiasis is estimated to cost over 4 billion US dollars each
year in direct costs and lost production (14).

Positional cloning of genes controlling susceptibility to infec-
tion with T. congolense

Some breeds of African cattle, such as N’Dama, are able
to tolerate infections and remain productive (13,14). This
trait is presumed to have arisen through natural selection
acting on cattle exposed to trypanosome infection. Mice
strains also differ in their resistance to T. congolense
infection; C57BL/6(B6) mice survive significantly longer
than A/J(A) or Balb/c(C)(15,16). These mice strains act
as a model for the modes of resistance in cattle. The
differences in resistance in the mouse have been used to
map 3 QTL controlling survival after infection in the
mouse model. These loci have been designated
Trypanosoma infection response (Tir) and numbered
Tir1, Tir2 and Tir3. The Tir1 QTL showed the largest
effect on survival (17), and was chosen as the proof-
of-concept target for our methodology. Tir1 is located on
mouse chromosome 17 in a particularly gene-rich area.
It is therefore possible that this QTL contains multiple
QTg—a fact that must be taken into account in any
detailed analysis of Tir1 candidate genes.
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Analysisofgeneexpressionofmice infectedwithT.congolense

A microarray experiment was undertaken by researchers
on the Wellcome Trust Pathogen-Host Project to
survey the mouse genome for genes and pathways that
were differentially expressed between susceptible (A/J and
Balb/c) and resistant (C57BL/6) strains. RNA samples
were prepared from liver and spleen at 0, 3, 7, 9 and 17
days post-infection and from kidney at Days 0 and 7 post-
infection. Twenty-five tissue samples were collected, each
condition being a unique combination of day, tissue and
strain. The RNA prepared from these samples was
combined to create five independent pools of five RNA
samples for each condition, and was subsequently
hybridized to Affymetrix (18) Mouse430_2 gene chips.
A total of 180 microarrays were used to measure the
expression of the 36 conditions that were studied.
Microarray data was first analysed with DChip (19) to
determine any outliers. All hybridizations that passed the
DChip analysis were normalized using RMA (20). In
addition, PCA analysis was performed to identify any
hybridizations that passed the DChip quality control but
could still be classified as outliers.

Manual analysis of theMouse–Cow syntenous region

Ten QTL for response to T. congolense infection have also
been mapped in cattle (14). The comparison of the cattle
and mouse QTL identified a 400 kb sub-region of the Tir1
mouse QTL that was syntenic with a QTL on bovine
chromosome 7, spanning from �31.8 to 32.2Mb on
mouse chromosome 17.

It was hypothesized that the mouse and cattle QTL
might both contain the same QTL genes; consequently this
region, which contained just 8 of the 344 genes in the
murine QTL, was prioritized for intensive research using
the traditional manual methods. Another candidate gene
chosen for further study was tumour necrosis factor
(TNF). This was chosen as it lay within the Tir1 region
and is known to be a key gene for control of immune
response. Detailed experiments using TNF knock-out
mice, however, seemed to demonstrate that TNF was not
playing a key role in determining the resistant susceptible
phenotypes (21). We therefore explored the hypothesis
that a large-scale, systematic and data-driven approach
could uncover other candidate quantitative trait genes that
would be missed through targeted, hypothesis-driven
strategies. Although the mouse and cattle regions do
share syntenous regions, there is no expectation that the
murine and bovine QTL will contain the same genes.

MATERIALS AND METHODS

The expression of genes within their biological pathways
contributes to the expression of an observed phenotype. By
investigating links between genotype and phenotype at the
level of biological pathways, it is possible to obtain a global
view of the processes which may contribute to the
expression of the phenotype (22). Additionally, the explicit
identification of responding pathways naturally leads to
experimental verification in the laboratory. We therefore
opted to analyse QTL and gene expression data not directly

at the level of genes but at the level of pathways (Figure 1a).
Using this pathway-driven approach provides a driving
force for functional discovery rather than gene discovery.
In order to determine which genes reside in the QTL

region of choice, the physical boundaries of the QTL need
to be determined. Each gene is then subsequently
annotated with its associated biological pathways,
obtained from the KEGG pathway database (23). The
same process of pathway annotation is also carried out for
the genes that are found to be differentially expressed in
the microarray study of choice. These two sets of pathway
data enable us to obtain a subset of common pathways
that contain genes within the QTL region and genes that
are differentially expressed in the microarray study. By
identifying those pathways common to both microarray
and QTL data, we are able to obtain a much richer model
of the processes which may be influencing the expression
of the phenotype. This process is summarized in
Figure 1b.
One drawback of this approach, however, is the reliance

on extant pathway annotations for genes identified in the
QTL regions and from the microarray studies. However,
by explicitly recording the workflow output from KEGG,
we can, if required, identify genes that do not have
pathways associated with them.
For such an approach to be conducted systematically,

any web resources used (including their parameters)
should be stated explicitly. By passing data from one
service to the next in a workflow, vast amounts of data can
be analysed with little input required from the user, other
than that of parameter configuration. This makes work-
flow technology an ideal tool for processing high-
throughput data in a systematic and explicit manner.
In order to determine the genes that lie within Tir1 QTL

region, the position of flanking markers used in the
original mapping studies were identified in mouse
Ensembl (24) release 40. These were identified as
D17Mit29 and D17Mit11 on chromosome 17 (16), at
28 394 586 and 38 278 830 bp respectively, within version
40 of the Ensembl Mouse database (NCBI build 36).
The position of D17Mit11 was estimated based on
close proximity to the gene Crisp2 (Mouse Genome
Identifier - MGI:98815).
The implementation of the pathway-driven approach

consisted of three Taverna workflows. The first workflow
constructed, qtl_pathway, was implemented to identify
genes within a QTL region, and subsequently map them to
pathways held in the KEGG pathway database. Lists of
genes within a QTL were obtained from Ensembl, together
with UniProt (25) and Entrez gene (26) identifiers,
enabling them to be cross-referenced to KEGG gene and
pathway identifiers. A fragment of this workflow can be
seen in Figure 2, which shows the mapping from QTL
region (label A) to KEGG gene identifiers (label C). This
workflow represents an automated version of the manual
methods required to perform such a task, including the
process of collating all information into single output files.
Additional services were added to format data into the
correct input/output style, these services have not been
assigned labels in Figure 2.

Nucleic Acids Research, 2007, Vol. 35, No. 16 5627



A

B

Figure 1. (a) An illustration showing the prioritization of phenotype candidates, from the pathway-driven approach. All pathways are differentially
expressed in the microarray data. Those pathways which contain genes from the QTL region are assigned a higher priority (pathways A and B) than
those with no link to the QTL region (pathway C). Higher priority pathways are then ranked according to their involvement in the phenotypes
expression, based on literature evidence. Abbreviations: CHR:Chromosome; QTL:Quantitative Trait Loci. (b) An illustration for the pathway-driven
approach to genotype–phenotype correlations. The process of annotating candidate genes from microarray and QTL investigations with their
biological pathways is shown. The pathways gathered from both studies are compared and those common to both are extracted as the candidate
pathways for further analysis.These pathways represent a set of hypotheses, in that the candidates are the hypothetical processes which may
contribute to the expression of the observed phenotype. Subsequent verification is required for each pathway by wet lab investigation and literature
searches. This apporach is separated into two sections, distinguished by the dividing line between the selction of common pathways and the
generation of hypotheses. The section labelled A represents the workflow side of the investigation;, whilst the section labelled B represents verification
of the hypotheses through wet lab experimentation and literature mining.
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Analysis of microarray liver sample data from C57BL/6
and A/J mice at Days 3 and 7 post-infection, identified 981
and 1331 probesets that were differentially expressed on
the basis of a corrected t-test with a p-value <0.01 and a
log2 fold change >0.5. We chose to focus on the early time
points of Days 3 and 7 for this investigation. This was
because the mouse strains used in microarray study
showed a strong gene expression response to infection at
the early time points in the microarray data compared to
that of the later time points. The later time points from the
microarray study were found to be the result of secondary
effects on infection. Permissive criteria were used at this
stage of data analysis in order to reduce the incidence of
false negative results (which could result in missing one of
the true QTg). Any true negative results would later be
discarded on correlation of the pathways with the

observed phenotype. These correlations of pathways
with the observed phenotype are carried out through
traditional in vivo and in vitro analyses on the candidate
QTg. Mining the literature for involvement of the path-
ways and candidate genes being involved in the expression
of the phenotype are also required for hypothesis
verification. As a result of permissive criteria being
employed, 2312 probesets were chosen for further analysis
and annotation with their biological pathways.
The second workflow, Probeset_to_pathway, provided

annotation of microarray probeset identifiers. Ensembl
gene identifiers associated with Affymetrix probesets were
obtained from Ensembl. These genes were entered into the
same annotation workflow as that used for qtl_pathway.
The Entrez and UniProt database identifiers were used to
map the Affymetrix probeset identifiers to KEGG
pathways.
Significant problems were encountered when attempting

to cross-reference between database identifiers. This has
proven to be a considerable barrier in bioinformatics
involving distributed resources, including the naming
conventions assigned to biological objects (27). In an
attempt to resolve this, we have provided a single and
explicit methodology by which this cross-referencing was
done. This methodology is captured within the workflows
themselves.
To obtain the pathways which both intersect the QTL

region and are present in the gene expression data, we
used a third workflow, named common_pathways, to
obtain a list of KEGG pathway descriptions. Each of
the pathways returned from the common_pathways work-
flow were investigated in turn. Lists of intersecting QTL
and microarray pathway outputs used in this study are
available as Supplementary Data.
Details of gene sequencing methods, carried out for

validating potential candidate QT genes, are also provided
in the Supplementary Data (Supplementary Table 2 and
sequencing_methods). Any additional information is
available on request.
Microarray data used in this investigation is available in

ArrayExpress (E-MEXP-1190).

RESULTS AND DISCUSSION

Candidate genes involved in trypanosomiasis resistance

The systematic application of the workflows to the lists
of genes, from both the Tir1 QTL region and
the microarray study, identified a total of 87 pathways
from both Days 3 and 7 post-infection which contained
genes in both the QTL and the set of differentially
regulated genes (available in Supplementary Data named
Tir1_DayX_intersecting_pathways.xls, where X represents
the day post-infection). Of the 344 genes identified in the
Tir1 QTL region, a total of 82 were subsequently mapped
to their KEGG biological pathways.
Table 1 shows the set of candidate pathways and QT

genes that may be involved in the trypanosomiasis
resistance phenotype. From this list it is clear that the
complete list of 344 genes, initially identified in the Tir1
QTL region, has been narrowed down significantly to just

Figure 2. Annotation workflow to gather genes in a QTL region, and
provide information on the pathways involved with a phenotype. This
workflow, shown as a sub-set of the complete workflow, requires
a chromosome, and QTL start and stop positions in base pairs. The
genes in this QTL region are then returned from Ensembl via a
BioMart plug-in. These genes are subsequently annotated with UniProt
and Entrez identifiers, start and end positions, Ensembl Transcript ids
and Affymetrix probeset identifiers for the chips Mouse430_2 and
Mouse430a_2. The UniProt and Entrez ids are submitted to the KEGG
gene database, retrieving a list of KEGG gene ids.
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32 candidate QT genes. A number of genes identified from
these results, are present in multiple pathways from the 87
pathways identified in total. In order to determine the role
of each QTg, each of the pathways was associated with the
gene expression data using the GenMapp software
package (28). Those pathways in which a high proportion
of component genes showed differential expression follow-
ing trypanosome challenge were prioritized for further
analysis. One such pathway identified was the MapK
signalling pathway.
There are four genes from the MapK pathway within

the Tir1 QTL: Daxx, TNF, Mapk13 and Map14. Of these,
Daxx showed the strongest signal of differential expression
at early time points. (Figure 4 in Supplementary Data)
and TNF has already been shown to be a poor candidate
QTg (29). Daxx was therefore chosen as the primary
candidate QTg, from this pathway, to investigate further.
Daxx is widely reported to be an enhancer for apoptosis

(30,31). It is also reported that susceptible mice infected
with trypanosomiasis show an increase in apoptosis (32).
During the acute stage of trypanosome infection, a large
number of leucocytes undergo apoptosis, as the immune
response is re-modelled to control the infection (33). This
pathway is therefore an example of the pathway labelled A
in Figure 1a, with the candidate gene being directly related
to the QTL region and known, through literature, to be
involved in the phenotype.

The identification of Daxx as a candidate for the Tir1
QTL gene prompted the re-sequencing of this gene in
order to identify polymorphisms that might correlate
with the phenotype. Out of the 17 polymorphisms
identified, 3 were found to have allele distributions that
show a relationship with the phenotype. Two of these
three were located in the intronic or 50 upstream region
suggesting a possible affect on splicing or expression. The
third mutation to associate with survival time was a three
base deletion in exon 5, coding for an aspartic acid
[in submission to dbSNP (34)]. This deletion of one
aspartic acid residue (D) in a poly-aspartic acid tract was
identified in BALB/c and A/J whereas no deletion was
found the tolerant strain C57BL/6J (Figure 3). It has been
previously noted that Daxx binds to the p53 protein via
this acidic region (35). The study by Zhao et al. (35)
showed that the deletion of this acidic region abolished the
Daxx–p53 interaction. The protein p53 is reported to
control cellular apoptosis (35,36). We therefore hypothe-
size that a mutation within this acidic region may alter the
binding between Daxx and p53 in such a way as to result
in a differing apoptosis phenotype between the mouse
strains. In order to confirm this effect, however, further
in vitro and in vivo studies are required. Further
investigation is also required to confirm the presence of
the Daxx gene within the bovine QTL region, and its role
as a potential QTg.

Table 1. A subset of the KEGG pathways found to be differentially expressed at Day 7 in the microarray data

KEGG pathway Ids Pathway descriptions Genes in Tir1 QTL region

path:mmu00240 Pyrimidine metabolism—Mus musculus (mouse) Znrd1
path:mmu04610 Complement and coagulation cascades—Mus musculus (mouse) C4b C2 Cfb
path:mmu04320 Dorso-ventral axis formation—Mus musculus (mouse) Notch3 Notch4
path:mmu00620 Pyruvate metabolism—Mus musculus (mouse) Glo1
path:mmu00600 Sphingolipid metabolism—Mus musculus (mouse) Neu1
path:mmu04370 VEGF signalling pathway—Mus musculus (mouse) Mapk14 Mapk13
path:mmu04540 Gap junction—Mus musculus (mouse) Tubb5
path:mmu00565 Ether lipid metabolism—Mus musculus (mouse) Agpat1
path:mmu00564 Glycerophospholipid metabolism—Mus musculus (mouse) Agpat1
path:mmu04310 Wnt signalling pathway—Mus musculus (mouse) Csnk2b
path:mmu00590 Arachidonic acid metabolism—Mus musculus (mouse) Cyp4f14 Cyp4f15 Cyp4f13 Cyp4f16
path:mmu04620 Toll-like receptor signalling pathway—Mus musculus (mouse) Mapk14 Tnf Mapk13
path:mmu04912 GnRH signalling pathway—Mus musculus (mouse) Mapk13 Mapk14
path:mmu04670 Leukocyte transendothelial migration—Mus musculus (mouse) Mapk13 Mapk14
path:mmu04330 Notch signalling pathway—Mus musculus (mouse) Notch3 Notch4
path:mmu04110 Cell cycle—Mus musculus (mouse) Cdkn1a
path:mmu00561 Glycerolipid metabolism—Mus musculus (mouse) Agpat1
path:mmu04530 Tight junction—Mus musculus (mouse) Csnk2b
path:mmu04510 Focal adhesion—Mus musculus (mouse) Col11a2 Tnxb
path:mmu04010 MAPK signalling pathway—Mus musculus (mouse) Mapk14 Tnf Daxx Mapk13
path:mmu00062 Fatty acid elongation in mitochondria—Mus musculus (mouse) Ppt2
path:mmu04664 Fc epsilon RI signalling pathway—Mus musculus (mouse) Mapk14 Tnf Mapk13
path:mmu00310 Lysine degradation—Mus musculus (mouse) Ehmt2
path:mmu04630 Jak-STAT signalling pathway—Mus musculus (mouse) Pim1
path:mmu00230 Purine metabolism—Mus musculus (mouse) Pde9a Znrd1
path:mmu04910 Insulin signalling pathway—Mus musculus (mouse) Flot1
path:mmu03320 PPAR signalling pathway—Mus musculus (mouse) Rxrb Angptl4
path:mmu00260 Glycine, serine and threonine metabolism—Mus musculus (mouse) Cbs
path:mmu00604 Glycosphingolipid biosynthesis - ganglioseries—Mus musculus (mouse) B3galt4
path:mmu04520 Adherens junction—Mus musculus (mouse) Csnk2b
path:mmu04920 Adipocytokine signalling pathway—Mus musculus (mouse) Rxrb Tnf

The genes listed above that appear in the differentially expressed pathways are also located within the Tir1 QTL region. We have chosen to ignore
the pathways containing the H2 complex genes due to the highly polymorphic nature of these genes. Pathways that do not represent metabolic
processes have also been removed from this table. A complete list of the genes and pathways common to the Tir1 QTL region and Day 7 gene
expression data can be found within the Supplementary Data.
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The remaining candidate genes identified from these
workflows are currently undergoing further investigation
to establish their precise role in the trypanosomiasis
phenotype.

Workflows and the systematic approach

Since we have chosen to automatically pass data from one
service into the next using workflows, we are now able to
process a far greater volume of information than can be
achieved using manual analysis. This in turn provides the
opportunity to systematically analyse any results we
obtain without the need to prematurely filter the data
for human convenience. An example of this triaging
process was found, where studies carried out by research-
ers on the Wellcome Trust Pathogen-Host Project (see
Acknowledgements section) had failed to identify Daxx as
a candidate gene for trypanosomiasis resistance. This
occurred when manually analysing the microarray and
QTL data; researchers hypothesized that the mouse–cow
syntenous QTL region may contain the same QT genes. It
was later found through a systematic analysis that Daxx
lay outside of this region, and so the mouse QTL data was
prematurely filtered based on researcher bias (although
this does not preclude the discovery of other QT genes
within this syntenous region).

A note should be made in relation to the SNP density of
this QTL region, and the possibility of further QTg within
this region. Of the 344 genes identified within the QTL
region, 194 were found to contain SNPs, of which 144
exhibit expression differences that correlate with pheno-
type. These 144 genes could therefore be candidate QT
genes. Polymorphisms in individual genes in the QTL are
insufficiently informative to reduce the list of candidate
genes to a manageable number. The use of a workflow-
based approach, however, makes it possible to prioritize
those genes that have a functional association with
pathways, and have been shown to respond to infection
out of the initial list of candidate genes. It should be
emphasized that whilst we have identified a correlation
between a new polymorphism in Daxx and a pathway that
responds to infection, we cannot yet conclude that this is
the QTg. The Tir1 QTL is linked to survival after
infection, whilst the correlation we propose is between a
DNA polymorphism and gene expression. The poly-
morphism identified may result in changes of the gene
expression, but not the differences in survival of the mouse
strains used. Detailed functional studies of the Daxx–p53
interaction will be required to determine the effect, if any,
the aspartate deletion plays in relation to the observed
phenotype.

The use of a hypothesis-driven approach is essential for
the construction of a scientifically sound investigation,

however, the use of a data-driven approach should also be
considered. This would allow the experimental data to
evolve in parallel to a given hypothesis to form its own
hypotheses regardless of any previous assumptions (8), as
shown by this case. This method can be used to either
confirm or disprove any given hypotheses, compiled by a
traditional hypothesis-driven analysis of the data. As such,
we propose the use of a combined data and hypothesis-
driven analyses of the experimental data.
Worthy of note is that the expression of genes and their

subsequent pathways can be investigated with little to no
prior knowledge, other than that of the selection of all
candidate genes from the entire QTL region. This reduces
the bias which may be encountered from traditional
hypothesis/expert-driven approaches. By implementing
the manually conducted experiments in the form of
workflows, we have shown that an automated systematic
approach reduces, if not eliminates, these biases whilst
providing an explicit methodology for recording the
processes involved. These explicit analysis pipelines
increases the reproducibility of our methods and also
provides a framework for which future experiments can
adapt or update the underlying methods.
In using the Taverna workflow workbench, we are able

to state the services used and the parameters chosen at
execution time. Specifying the processes in which these
services interact with one another in the native Taverna
workflow language, Scufl (12), enables researchers to re-
use and re-run previously conducted experiments. An
additional feature of the Taverna system is the capture of
experimental provenance. The workflow parameters and
individual results are captured in this execution log where
the data obtained from previous analyses can be viewed.
The generality of these workflows allows them to be re-

used for the integration of mapping and microarray data
in other cases other than that of trypanosomiasis
response. Furthermore, the QTL gene annotation work-
flow may be utilized in projects, which use the mouse
model organism and do not have any gene expression data
to back up findings. Likewise, the microarray gene
annotation workflow may be used in studies with no
quantitative evidence for the observed phenotype. Future
work on this use case, investigating response to trypano-
somiasis infection, will include analysis of the two
remaining QTL regions, Tir2 and Tir3 (a, b and c), and
the integration of cattle QTL and gene expression data.
It should be noted that an unavoidable ascertainment

bias is introduced into the methodology, in the form of
utilizing remote resources for candidate selection. This
bias was observed on analysis of the Tir1 region, where a
total of 344 unique candidate QT genes were identified
from BioMart, of which 82 genes were annotated with
their biological pathways. The lack of pathway annota-
tions limits the ability to narrow down the true candidate
genes from the total genes identified in the QTL region,
with the reliance on extant knowledge. A rapid increase in
the number of genes annotated with their pathways,
however, means that the number of candidate QTg
identified in subsequent analyses is sure to increase. The
workflows described here provide the means to readily
repeat the analysis.

Figure 3. Alignment of part of the acidic region of the Daxx gene in
which an aspartate was deleted. 35/41 amino acids in this region are
aspartic acid (D) or glutamic acid (E).
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Although we have successfully reduced the number of
false negative QTg, one possible complication we envisage
is the increase in the number of false positive candidate
QTg returned to the user.
The KEGG pathway database was chosen as the

primary source of pathway information due it being
publicly available and containing a large set of biological
pathway annotations. This results in a bias, relying on
extant knowledge from a single data repository; however,
this investigation was established as a proof of concept for
the proposed methodology and, with further work, may
be modified to query any number of pathway databases,
provided they offer web service functionality.

CONCLUSION

In this investigation, we have illustrated how the large-
scale analysis of microarray gene expression and quanti-
tative trait data, investigated at the level of biological
pathways, enables links between genotype and phenotype
to be successfully established. This was implemented
systematically through the use of workflows. Our inves-
tigation confirmed that non-systematic manual examina-
tion of QTL and microarray data does introduce bias into
the processes, particularly by discarding candidates in
premature filtering of such large datasets.
Analysis of the QTL and gene expression data collected

under the Wellcome Trust Host-Pathogen project identi-
fied a candidate gene, Daxx, which is thought to be strongly
associated with resistance to trypanosomiasis infection.
The workflows developed in this project are freely

available for re-use—either by ourselves or others in
future analyses and have been integrated into the
myExperiment (37) project which supports scientific
collaboration, discovery and workflow re-use.
Revisiting the issues (i) to (vi) outlined within the

Introduction section, we can show that by utilizing
workflows within this investigation we have:

(i) Successfully reduced the premature filtering of
datasets, where we are now able to process all
data systematically through the workflows

(ii) The systematic analysis of the gene expression and
QTL data has supported a data-driven analysis
approach

(iii) The use of a data-driven approach has enabled a
number of novel hypotheses to be inferred from the
workflow results, including the role of apoptosis
and Daxx in trypanosomiasis resistance

(iv) The workflows have explicitly captured the data
analysis methodologies used in this investigation

(v) Capturing these data analysis methods enables for
the direct re-use of the workflows in subsequent
investigations

(vi) The total number of errors within this investigation
has been reduced as a whole from all of the issues
addressed above

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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