

Performing statistical analyses using the Rshell processor

Stian Soiland-Reyes and Christian Brenninkmeijer University of Manchester

Original material by Peter Li, University of Birmingham, UK Adapted by Norman Morrison

Bonn University, 2014-09-01 http://www.taverna.org.uk/

Introduction

- R is a popular scripting language oriented towards statistical computing
- There are a large number of modules that add functionality to R such as BioConductor and rCDK
- The Rshell service in Taverna allows workflows to include services that run R scripts on an installation of R
- R can be located on the same machine as you use to run the workflow, or on a different machine
- To allow Taverna to talk to the R installation, Rserve must also be running on the same machine as R

R Pages on the Taverna Wiki

- Installation of a local R Server may be too much for today's tutorial
- In which case just read through the slides to see if Installing R is something you need/want
- More information on Taverna and R can be found at:
 - http://dev.mygrid.org.uk/wiki/display/tav250/Rshell

Installation of R

- Documentation available from:
 - http://cran.r-project.org/doc/manuals/R-admin.html
- Windows
 - Download executable file
 - http://cran.r-project.org/bin/windows/base/
- Linux
 - Depends on the version of linux
 - http://cran.r-project.org/
- Mac
 - Download pkg file
 - http://cran.r-project.org/bin/macosx/

Installation of Rserve

- After installing R, the easiest way to install Rserve is to install it from CRAN. Simply use in R:
 - install.packages("Rserve");
- Since Rserve comes as an R package, you can start Rserve within R by typing:
 - library(Rserve);
 - Rserve();
- Please note that if you get an error (Fatal error: you must specify '--save', '--no-save' or '--vanilla'), then start Rserve with the following command
 - Rserve(args="--no-save")

Configuration of Rserve

- Rserve is configured by the configuration file located at /etc/Rserv.conf
- Configuration of Rserve on your R installation has already done using a Rserv.conf file
- Documentation on configuring Rserve
 - http://www.rforge.net/Rserve/doc.html#conf

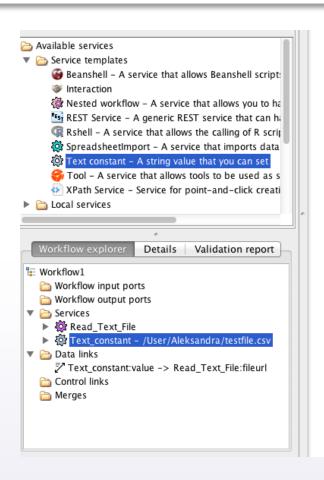
An example statistical analysis

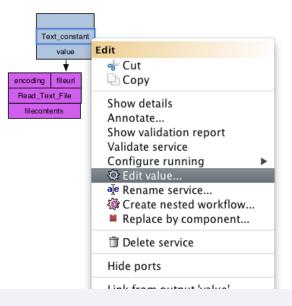
To illustrate how to use the Rshell service, we will carry out a simple statistical analysis on a small hypothetical set of species incidence data from 4 species measured from 6 sites:

			Site			
Species	N1	N2	A1	A2	B1	<i>B</i> 2
Species_A	90	110	190	210	290	310
Species_B	190	210	390	410	590	610
Species_C	90	110	110	90	120	80
Species_D	200	100	400	90	600	200

An example statistical analysis

- This data set can be found in a comma-separated file named biodiv_R_testdata.csv in the myExperiment group under "Biodiversity Test Data for Rservice Tutorial". Download the file.
- To analyse this data set using Rshell, the data has to be loaded into memory as part of the workflow
- This can achieved by using the Read_Text_File service available in the Local services/io folder of the service palette (as shown on the next slide)


An example statistical analysis

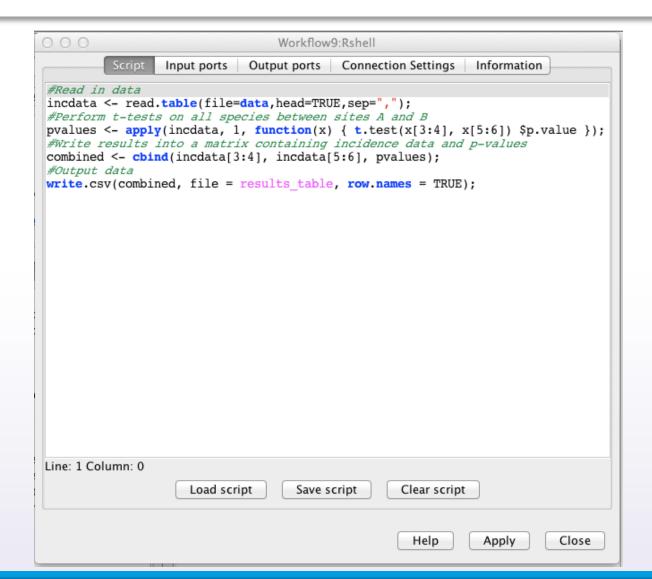


Drag this service onto the workflow diagram and link it to a String constant containing the path to the testdata.csv file (as shown on the next slide)

An example statistical analysis

Adding an Rshell service

- Test this service works by attaching its output port to a workflow output and running the workflow
- Now add an Rshell service to a workflow by locating it under Service templates in the Service panel and dragging it onto the workflow diagram


Configuring a Rshell service

- A window will appear to configure the use of the Rshell service
- The configuration of the Rshell service is split into several tabs
- Each tab has Apply and Close buttons at the bottom. Apply saves the configuration as shown in the tabs, and Close closes the configuration dialog

Configuring a Rshell service

Configuring a Rshell service

- The first tab of the Rshell configuration is used to enter the R script that will be executed
- We will use an R script that will perform a series of t-tests to see if species incidence differs significantly between site A and site B.
- You should be careful about performing a t-test on as little as 2 replicates - this example is just for illustrative purposes

R script

```
#Read in data
incdata <- read.table(file=data,head=TRUE,sep=",");
#Perform t-tests on all species between sites A and B
pvalues <- apply(incdata, 1, function(x) { t.test(x[3:4], x[5:6])
$p.value });
#Write results into a matrix containing incidence data and p-
values
combined <- cbind(incdata[3:4], incdata[5:6], pvalues);
#Output data
write.csv(combined, file = results_table, row.names = TRUE);</pre>
```

Copy and paste the above script into the Script tab of the Rshell configuration box

- Input and output ports are the connection points between the rest of the workflow and the Rshell service
- Rshell makes input ports available as variables in the script named after the port.
- Output ports read their named variable after executing the script. The last assigned value to the variable will be the one returned from the service via the output port.

- To add an input port:
 - Select the Input ports tab from the Rshell configuration dialog
 - Click Add port button
 - Enter the name of the input port, for this example use 'data'
 - Specify the input port type, for this example use 'Text-file'

The University of Manchest<u>er</u>

- The input port type indicates the data type this variable will have within the R-script. The possible types for R input ports are:
 - Logical
 - Numeric
 - Integer
 - String
 - Logical vector
 - Numeric vector
 - Integer vector
 - String vector
 - Text-file

- An output port can be added in a similar way:
 - Select the Output ports tab from the Rshell configuration dialog
 - Click Add port button
 - Enter the name of the output port, for this example use 'results_table'
 - Specify the output port type, for this example use 'Text-file'

000		Workflow1:Rshe	II
Script	Input ports	Output ports	Connection Settings
Name results_ta		Semantic Type Text-file	Remove
			Add Port
			Apply Close

The University of Manchest<mark>er</mark>

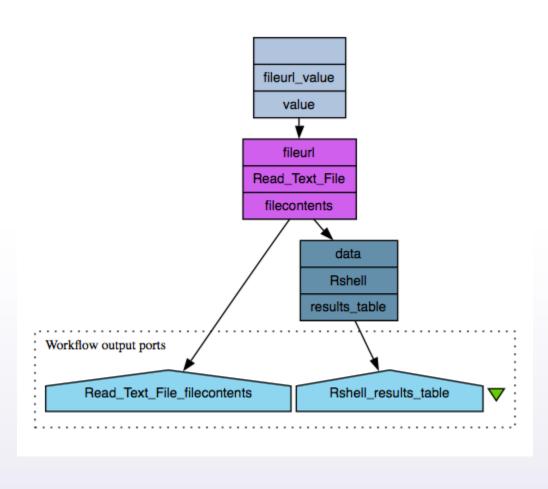
- The output port type indicates the type this variable has within the R-script. The possible types for R output ports are:
 - Numeric
 - Integer
 - String
 - Logical vector
 - Numeric vector
 - Integer vector
 - String vector
 - Text-file

Rshell connection settings

- Configuration of the connection parameters for Rserve is done using the Connection settings tab. This tab can be used to:
 - Configure the Rshell to use an Rserve installation on a different machine to where you run the Taverna workbench
 - Configure the access of Rserve on a different port
 - Provide authentication details for accessing Rserve in the form of a username and password
- If you are using Rserve on the same machine that you are running Taverna on then you probably do not need to change the connection settings

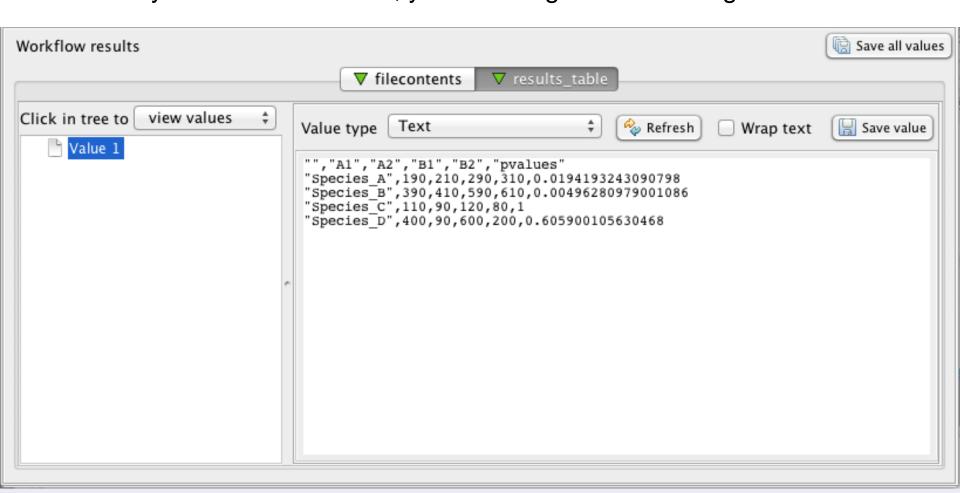
Rshell connection settings

000		Workflow1:Rshell					
Script	Input ports	Output ports	Connection Settings				
Hostname	someothermach	ine.ora					
Port	6311						
	the_rserve_username						
Password	the_rserve_password						
	Keep Session Alive						
			Apply Close				


Completing the workflow

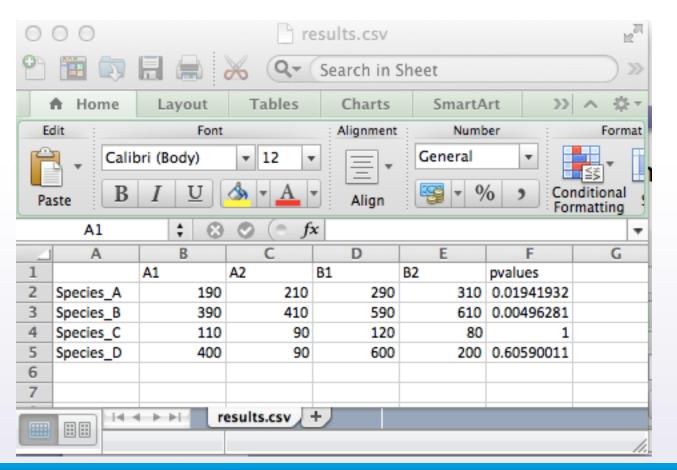
- To complete the workflow:
 - Attach the output port of the Read_text_file to the "data" input port of the Rshell service
 - Create a workflow output from the results_table output port of the Rshell service
- Your workflow should now look as follows:

Completing the workflow



Results

When you run the workflow, you should get the following results:



Results

Try saving the results as a csv file and opening the file in Excel. You see something as follows:

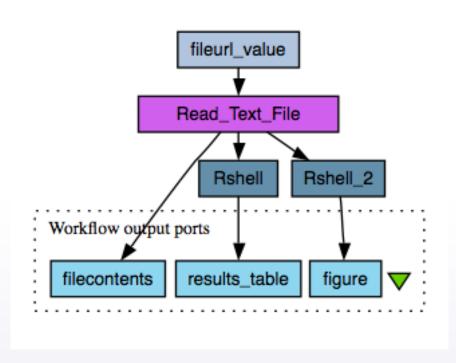
Results

- The results show that:
 - □ The incidence of species *b* is significantly different at 0.01 level
 - The incidence of species a is not significant at 0.01 level
 - □ The incidence of Species *c* and *d* have no significant difference. For species *d* that is because even though an increasing trend is observed, the variation within each category is too high to allow any conclusions.

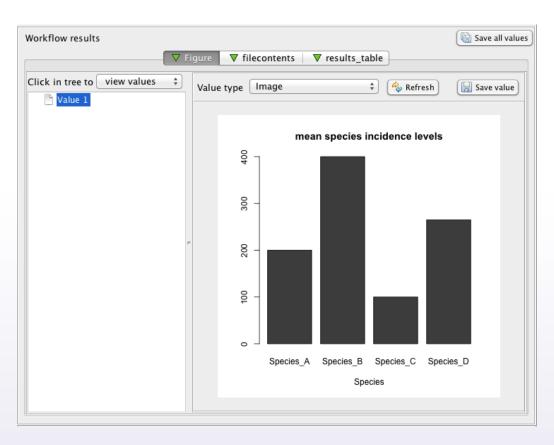
- The results from R scripts may be in the form of images such as a plot or a graph
- These images can be output from an Rshell service

- Add another Rshell processor onto the current workflow from the service template folder
- Provide the processor with the R script below:


```
#Read in data
incdata <- read.table(file="data", head=TRUE, sep=",");</pre>
#Transpose
t <- t(incdata);
#Calculate means
mean a <- mean(t[, "Species A"]);</pre>
mean b <- mean(t[, "Species B"]);</pre>
mean c <- mean(t[, "Species C"]);</pre>
mean d <- mean(t[, "Species D"]);</pre>
#Combine data
means <- c(mean a, mean b, mean c, mean d);</pre>
#Transform to data frame
means <- data.frame(means, row.names = c("Species A", "Species B",
"Species C", "Species D"));
png(filename=figure, height=400, width=400, bg="white");
#Plot
barplot(t(means[1]), main = "mean species incidence levels", xlab =
"Species");
dev.off();
```



- Complete the configuration for this Rshell processor by:
 - Creating an input port called data and associating it with a Text-file data type
 - Creating an output port called figure and associating it with a png-file data type
- Also, finish building the workflow by connecting a workflow output to the figure output port of the Rshell processor
- Your workflow will now look as follows:



Output of images from Rshell

Now run the workflow. You should get the following

results:

The result is an image showing a bar plot of the mean incidence levels of the four species

