
An Introduction to

Taverna Components

Stian Soiland-Reyes and Christian Brenninkmeijer

University of Manchester
materials by Aleksandra Pawlik

http://orcid.org/0000-0001-9842-9718

http://orcid.org/0000-0002-2937-7819

http://orcid.org/0000-0002-1279-5133

http://orcid.org/0000-0001-8418-6735

Bonn University, 2014-09-01

http://www.taverna.org.uk/

This work is licensed under a

Creative Commons Attribution 3.0 Unported License

http://orcid.org/0000-0001-9842-9718
http://orcid.org/0000-0002-2937-7819
http://orcid.org/0000-0002-1279-5133
http://orcid.org/0000-0001-8418-6735
http://www.taverna.org.uk/
http://creativecommons.org/licenses/by/3.0/deed.en_GB

• Something that can be put into a workflow

• Well described - what the component does

• Behaves “well” - conforms to agreed good practice

• Curated - someone looks after it

• Produces and consumes data in agreed formats

• Fails in described ways - meaningful error messages

• Produces agreed type of provenance

• Documentation

• Example usage

• Hide complexity

• Predictable good behaviour

• Guaranteed to work together

• Can (in theory) check that data in a run

conforms to the component specification

• The agreement is a condition of being in a
“component family”

• Different domains, or even different uses within
a domain, have different agreements

• Astronomical data is not in the same formats as
biodiversity data

• Digital library components do not do the same tasks
as biodiversity components

• Agreement is formalized as a “component
profile”

• A component family is

• a pack on myExperiment, or

• a directory on your local machine

• A component is defined by a workflow (in a pack)
in a component family pack

• Components are versioned by the
myExperiment’s versioning

• Semantic annotations are stored in RDF as part
of the workflow definition

• Collated semantics, including workflow structure,
are combined on myExperiment.

• Contains:

• Workflow ‘realizing’ the component

• Example data

• Documentation

• Dependency specification

• A component family is shown in the service

panel of Taverna workbench

• Components can be included within a

Taverna workflow

• Components are not simply the same as

nested workflows

• You could think of them as nested workflows that

obey a set of rules and where you cannot see what

is nested (and should not care)

• Components are created by annotating a workflow

• Choice of a component family and so profile

• Semantic annotation from the specified ontologies

• Validation against the profile

• Component saved into the component family

• Can annotate:

• Workflow

• Input/Output ports

• Services inside workflow

• Extensions to myExperiment for
• Pack snapshots

• Semantic collation

• Semantic searching

• Use of components will allow
• Component developers to work on the component

• Component users to upgrade (or revert) the
component versions

• A workflow to remain ‘unchanged’ (if the component
interfaces remain the same)
• Powerful and dangerous

• Proxies for components (re-run and re-play)

• Components are “black boxes” in the
workflow and workflow runs

EBI InterproScan

 The workflow to call EBI InterproScan was quite

complex.

 It would be nice to be able to package that workflow up

and be able to use it as a single service in other

workflows

 That is exactly what components allow

Importing a component family

 Components are grouped into component families

 Component families are held in a component registry

 myExperiment is a component registry

 You can import a component family into the Service Panel

 Click Import new services and then

 Component service…

Selecting a component family

 In the dialog

 Select myExperiment component registry, and

 Test components family

 Click OK

Added component family

 In the Service panel you can now expand and

see the Test components family

Adding a component to a workflow

 Create a new workflow

 Add the EBI_InterproScan component into the

workflow

 Create input and output workflow ports and

connect them to the ports of the component

EBI InterproScan component

Running the workflow

 You can now run the workflow

 The value for the sequence should be

something like:
>sp|Q9BTV4|TMM43_HUMAN Transmembrane protein 43 OS=Homo sapiens GN=TMEM43 PE=1

SV=1

MAANYSSTSTRREHVKVKTSSQPGFLERLSETSGGMFVGLMAFLLSFYLIFTNEGRALKT

ATSLAEGLSLVVSPDSIHSVAPENEGRLVHIIGALRTSKLLSDPNYGVHLPAVKLRRHVE

MYQWVETEESREYTEDGQVKKETRYSYNTEWRSEIINSKNFDREIGHKNPSAMAVESFMA

TAPFVQIGRFFLSSGLIDKVDNFKSLSLSKLEDPHVDIIRRGDFFYHSENPKYPEVGDLR

VSFSYAGLSGDDPDLGPAHVVTVIARQRGDQLVPFSTKSGDTLLLLHHGDFSAEEVFHRE

LRSNSMKTWGLRAAGWMAMFMGLNLMTRILYTLVDWFPVFRDLVNIGLKAFAFCVATSLT

LLTVAAGWLFYRPLWALLIAGLALVPILVARTRVPAKKLE

Connecting components

 The workflow just contains the single service, we need

to connect the component with other services

 In the Design view, delete the sequence workflow input

port

 Right click and select Delete workflow input port

 Add Local Services -> ncbi -> Get Protein FASTA to

the workflow

 Connect the outputText of Get Protein FASTA to the

sequence port of the EBI_InterproScan

 Connect the id port of Get Protein FASTA to a workflow

input port

Connected component

Your workflow should

now look like:

Running the workflow - 2

 Run the workflow again

 You can use Q9BTV4 as the value for id

Is it really the complex workflow?

 In the Results view

you can click on

Progress report

 Expand

EBI_InterproScan

 You can see all the

services “hidden”

inside the

component

 The menu has a “Components” option

 Select “Create family”

 In the pop-up window set the registry to local

 Select a Profile (or see next slide if no profile available)

 Enter the family name (“ProcessString”)

 Find your local registry directory

 Hint: Components/ Manage Registries

 Registry Location

 In MyExperiment find the Empty profile

 Hint: http://www.myexperiment.org/files/1027.html

 Down File into the local registry directory

http://www.myexperiment.org/files/1027.html

 Add a local service “Split string into string list by regular

expression” (from ‘text’)

 Add the input port and set the regular expression to space

 Add a local service “Remove string duplicates” (from ‘list’)

 Connect the output from “Split string into string list by regular

expression” with the input of “Remove string duplicates”

 Add a local service “Merge String List to a String” and

connect its input with the “Remove string duplicates” output

and set the separator to be a space

 Select “Create component” from the “Components” menu

 Provide a name for the component (Remove duplicates)

 You should see a pink ribbon at the top

 Save the component. You will see a warning message – it

pops up because the component is not annotated. We can

annotate it in the component details.

 Close any open workflows

 Add the component(s) to the service panel

 Hint: Import Service/ Component Family

 Component registry: Local registry

 Component family: ProcessString

 Add the component to the workflow

 Hint: Available services/ Components …

 Add input and output ports

 Run

