
WORKFLOW RE-USE AND
DISCOVERY IN BIOINFORMATICS

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2008

By
Antoon Goderis

School of Computer Science

Contents

Abstract 13

Declaration 14

Copyright 15

Acknowledgements 16

1 Introduction 17
1.1 Research questions . 18
1.2 Thesis structure . 19
1.3 Publications . 20
1.4 External contributions . 22

2 Workflows, workflow re-use and repurposing 23
2.1 Workflows in science . 23

2.1.1 Why workflows in science? 23
2.1.2 Anatomy of a scientific workflow 27
2.1.3 Formal definition . 31

2.2 Workflow re-use and repurposing . 35
2.2.1 Definition . 35
2.2.2 Case studies in workflow re-use 37
2.2.3 Workflow re-use requirements 41

2.3 Related work . 47
2.3.1 Workflow re-use in business 47
2.3.2 Workflow re-use in science 49

2.4 Summary . 50

2

3 Workflow discovery 51
3.1 Definition . 51

3.1.1 Relation to workflow re-use and repurposing 52
3.1.2 Relation between discovery and composition 52

3.2 Workflow discovery requirements 54
3.2.1 Scalable discovery techniques 54
3.2.2 A comprehensive discovery model 54
3.2.3 The process knowledge acquisition bottleneck 54
3.2.4 Lack of workflow fragment rankings 55

3.3 Information need for workflow discovery 55
3.3.1 Construction of an in silico analysis 55
3.3.2 Linking work done in vivo and in vitro with work done in silico 57
3.3.3 Validation and extension of publications. 58

3.4 Workflow discovery matching types 60
3.4.1 Workflow discovery by signature and structure 60
3.4.2 Structural workflow matching types 61
3.4.3 Similarity-based matching 63
3.4.4 Complement-based matching 69

3.5 Workflow discovery tasks formally 76
3.5.1 Calculating workflow similarity 78
3.5.2 Finding workflow extensions 79
3.5.3 Finding workflow insertions 81
3.5.4 Finding workflow replacements 82

3.6 Related work . 82
3.6.1 Scope . 82
3.6.2 Discovery support in scientific workflow systems 85
3.6.3 Techniques in support of concrete workflow discovery 86
3.6.4 Classifying techniques by workflow matching conditions . . . 94

3.7 Summary and discussion . 95

4 Building benchmarks for workflow re-use 97
4.1 Overview of experiments . 97

4.1.1 Experimental setup . 98
4.1.2 Participants . 100
4.1.3 Materials . 101
4.1.4 Procedure . 102

3

4.1.5 Results . 102
4.2 Experiment 1: cross author, white box re-use 102

4.2.1 Experimental setup . 102
4.2.2 Participants . 103
4.2.3 Materials . 103
4.2.4 Procedure . 104
4.2.5 Results . 108

4.3 Experiment 2: cross author, black box re-use 112
4.3.1 Experimental setup . 112
4.3.2 Participants . 112
4.3.3 Materials . 112
4.3.4 Procedure . 113
4.3.5 Results . 113

4.4 Experiment 3: cross author, black box re-use 114
4.4.1 Experimental setup . 114
4.4.2 Participants and procedure 114
4.4.3 Materials . 114
4.4.4 Procedure . 115
4.4.5 Results . 115

4.5 Experiment 4: personal, black box re-use 116
4.5.1 Experimental setup . 116
4.5.2 Participants and procedure 116
4.5.3 Materials . 116
4.5.4 Results . 117

4.6 Experiment 5: cross author, grey box re-use 117
4.6.1 Experimental setup . 117
4.6.2 Participants . 118
4.6.3 Materials . 118
4.6.4 Procedure . 120
4.6.5 Results . 124

4.7 Related work . 127
4.8 Summary . 128

4.8.1 Workflow re-use and discovery requirements confirmed 128
4.8.2 Understanding of workflow re-use and discovery behaviour . . 130

4

5 Workflow discovery techniques 132
5.1 Overview of techniques . 132

5.1.1 Data flows in Taverna . 132
5.1.2 Source of workflow documention 133
5.1.3 Chapter structure . 134

5.2 Related work . 136
5.3 Google4WF: Full Text . 138

5.3.1 Knowledge acquisition bottleneck 138
5.3.2 Logical document view . 138
5.3.3 Rankings . 138

5.4 Woogle4WF: Full Text + Structure 138
5.4.1 Knowledge acquisition bottleneck 139
5.4.2 Logical document view . 139
5.4.3 Ranking . 139

5.5 JMFeta: Index Terms . 140
5.5.1 Knowledge acquisition bottleneck 140
5.5.2 Logical document view . 140
5.5.3 Ranking . 140

5.6 OWL4WF: Index Terms + Structure 141
5.6.1 The promise of OWL DL for service discovery 141
5.6.2 Description Logics in a nutshell 142
5.6.3 Knowledge acquisition bottleneck 142
5.6.4 Logical document view . 144
5.6.5 Ranking . 149
5.6.6 Outlook . 150

5.7 GUB4WF: Index Terms + Structure 151
5.7.1 Knowledge acquisition bottleneck 151
5.7.2 Logical document view . 151
5.7.3 Rankings . 152

5.8 Summary . 154

6 Evaluation of discovery techniques on benchmarks 156
6.1 Evaluation method . 156
6.2 Similarity-based personal and cross-author discovery 158

6.2.1 Results based on data from Experiment 1 158
6.2.2 Results based on Benchmarks 1 and 2 160

5

6.3 Complementarity-based discovery 162
6.4 Summary and discussion . 162

7 Re-use of Models of Computation 165
7.1 Problem statement . 165
7.2 Related work . 166
7.3 Workflows and Hierarchy . 167
7.4 Models of Computation in Ptolemy II and Kepler 169
7.5 Composing Models of Computation 171

7.5.1 Actor Abstract Semantics 172
7.5.2 Abstract semantics assumed by a director of the actors under

its control . 173
7.5.3 Abstract semantics exported by a director via the actor in which

it is placed . 174
7.5.4 Abstractions of time . 174
7.5.5 Director compatibility . 175

7.6 Composing PN, Dataflow and FSM Directors 175
7.7 Composing SR, DE, and CT Directors 177
7.8 Summary and discussion. 179

8 Conclusions 180
8.1 Conclusions and Contributions . 180

8.1.1 Requirements for workflow re-use and discovery in science . . 181
8.1.2 Capturing workflow re-use and discovery by scientists 183
8.1.3 Supporting workflow discovery with automated techniques . . 187
8.1.4 Impact of multiple models of computation on workflow re-use 191

8.2 Future work . 192
8.2.1 Requirements for workflow re-use and discovery in science . . 192
8.2.2 Capturing workflow re-use and discovery by scientists 194
8.2.3 Supporting workflow discovery with automated techniques . . 196

A List of Participants for User Experiment 5 199

B Participant Instructions for User Experiment 5 201

C Example Workflow Exercise for User Experiment 5 207

6

D Possible Workflow Edit Operations for User Experiment 5 209

Bibliography 211

7

List of Tables

3.1 Support in scientific workflow systems for workflow discovery, based
on the phase in the workflow lifecycle. 87

3.2 Support in scientific provenance systems for workflow discovery, based
on the phase in the workflow lifecycle. 87

3.3 Support in scientific workflow systems for workflow discovery in phase
2, based on workflow signature and structure. 88

3.4 Techniques for automated workflow discovery. 89
3.5 Techniques for automated workflow composition. 91
3.6 Classification of workflow discovery tools against workflow matching

conditions. 95
3.7 Classification of workflow composition tools against workflow match-

ing conditions. 95

4.1 Overview of user experiments. 98
4.2 Type of information measured during the black, grey and white box

based experiments. 99
4.3 Similarity (1 = identical, 9 = no similarity) of 5 workflows with respect

to the exemplar. 109
4.4 Usefulness (1 = best, 4 = worst) of six factors for estimating similarity

of 5 workflows with respect to the exemplar. 110
4.5 Agreement between the experts in their workflow exercise assessments.

. 116
4.6 Average scores of participants by assessment scheme. 126
4.7 Summary of user experiments into workflow discovery. 129
4.8 Summary of human benchmarks for workflow re-use 131

5.1 Summary of the considered automated discovery techniques. 134

8

5.2 Overview of workflow discovery tools in relation to document logical
view. 135

5.3 A classification of the adopted workflow discovery techniques in terms
of workflow match types. 137

6.1 Summary of evaluation method for automated discovery techniques . 157
6.2 Average recall and precision for versioning and cross-author discovery

on Benchmarks 1 and 2. 161

7.1 Rules for hierarchically mixing directors in Kepler and Ptolemy II. . . 175

8.1 Summary of user experiments into workflow discovery. 185
8.2 Summary of human benchmarks for workflow re-use 186
8.3 Summary of the considered automated discovery techniques. 188
8.4 Summary of evaluation method for automated discovery techniques . 189

9

List of Figures

1.1 Part of a Taverna workflow to annotate genetic sequences. 18

2.1 A bioinformatics workflow loaded in the Taverna workbench. 25
2.2 Five workflow layers of abstraction. 29
2.3 Data flow workflow examples based on a Taverna layout. 34
2.4 Example of an insertion based on two Taverna workflows 36
2.5 Different types of workflow re-use illustrated by a scenario from bioin-

formatics. 39
2.6 A scientific workflow life-cycle which extends beyond design and exe-

cution of workflows, to encompass discovery of existing resources for
inclusion, and publication of its design. 45

2.7 Business processes drawn from a pool of sub-processes. 48

3.1 A customised version of the Google search engine for bioinformatics
services and workflows. 56

3.2 A “mind map” for a workflow investigating Trypasonomiasis. 56
3.3 A query by example approach for workflows illustrated. 57
3.4 The myExperiment site for workflow sharing and collaboration. 58
3.5 OpenWetWare: sharing in vivo and in vitro protocols. 59
3.6 PubMedCentral: a portal for open access journals in biomedicine. . . 59
3.7 Matching workflows W1 and W2: which workflow elements to com-

pare and how? . 62
3.8 Data flow workflow examples repeated. 69
3.9 Appending data flows. 76
3.10 Prepending data flows. 77
3.11 Insertion in data flows. 77
3.12 Replacement in data flows. 78
3.13 Semantic and syntactic service composability. 93

10

4.1 Types of workflow re-use from the perspective of the author of a set of
workflows A. 100

4.2 Single author re-use: from A to A (A2A). 100
4.3 Cross author re-use: from B to A (B2A). 100
4.4 Cross author re-use: from A to B (A2B). 101
4.5 Cross author re-use: from B to B (B2B). 101
4.6 Cross author re-use: from B to C (B2C). 101
4.7 The AffyidToBlastxPDB.xml workflow loaded in the myGrid work-

bench. The Available services pane provides access to both services
and workflows. 104

4.8 The exemplar workflow AffyidToBlastxPDB.xml in more detail. From
a workflow input (accompanied by a red triangle), the workflow ac-
cesses the AffyMapper and BlastX Web services (the middle boxes)
and yields an output (indicated by a green upside down triangle). . . . 105

4.9 Workflow 1, AffyidToGeneAnnotation2.xml. 105
4.10 Workflow 2, AffyidToGeneAnnotation4.xml. 106
4.11 Workflow 3, BlastNagainstDDBJatDDBJ.xml. 106
4.12 Workflow 4, AffyidToFastaSequence.xml. 107
4.13 Workflow 5, williams-partA-paper.xml. 107
4.14 The form for entering workflow similarity values. 108
4.15 The workflow annotation process. 120
4.16 An example workflow exercise in user experiment 5. 121
4.17 Workflow edit operations allowed by participants in user experiment 5. 122
4.18 An example curated workflow . 123
4.19 Perceived difficulty of the exercises during experiment 5. 125
4.20 Participant confidence during experiment 5. 125

5.1 Williams-Beuren syndrome gene annotation pipeline. 145
5.2 Contents of the A-Box without the hs roles, hp transitivity and inverses 147
5.3 Visualization of overlap between the input workflow and one in the

repository. 155

6.1 Output for ranking strategy 3 with respect to the exemplar workflow. . 159
6.2 Background knowledge in workflows. 163

7.1 A Kepler workflow from chemistry combining the PN and SDF director.169
7.2 A simple example with DDF and FSM directors inside an SDF director. 178

11

7.3 The output of the example MoC composition. 178

8.1 The Workflow Management Coalition Reference Model. 193

12

Abstract

Scientists in many disciplines are increasingly faced with analysing a deluge of sci-
entific data from sources scattered across the globe. Workflow techniques have the
potential to become an important part of on-line experimentation as they allow scien-
tists to describe and enact their experimental processes in a structured, repeatable and
verifiable way.

Given the availability of scientist-friendly workflow editors, scientists are moving
away from cutting and pasting data between Web pages in favour of producing auto-
mated workflows based on Web services. An increasingly large pool of workflows is
being shared and made available for re-use. The notion that these workflows and the
experimental processes they represent are a useful, re-usable artifact in their own right
is new. As a new phenomenon, scientific workflow re-use and discovery is not well
understood and it is unclear whether and how it could be supported automatically.

The thesis analyses the workflow re-use and discovery process based on surveys,
interviews and user experiments with scientists and scientific programmers from dif-
ferent disciplines. We also analyse the impact of using multiple models of computation
on workflow re-use. In particular, we show how some models of computation are better
re-usable than others.

Further, we capture and model scientist re-use and discovery behaviour when re-
using data flow workflows from the bioinformatics domain. The result is a suite of
human benchmarks of value to developers of workflow discovery techniques.

Finally, the benchmarks enable us to evaluate a range of existing service discov-
ery based techniques and novel workflow-structure based discovery techniques. The
techniques vary in the language they work over (natural language or a Semantic Web
language) and the level of workflow detail they process. The evaluation shows that
performance of the workflow discovery techniques swings substantially depending on
the task in question. This argues in favour of a multi-varied approach that combines
multiple techniques.

13

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institu-
tion of learning.

14

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process) either
in full, or of extracts, may be made only in accordance with instructions given by the
Author and lodged in the John Rylands University Library of Manchester. Details may
be obtained from the Librarian. This page must form part of any such copies made.
Further copies (by any process) of copies made in accordance with such instructions
may not be made without the permission (in writing) of the Author.

The ownership of any intellectual property rights which may be described in this
thesis is vested in the University of Manchester, subject to any prior agreement to the
contrary, and may not be made available for use by third parties without the written
permission of the University, which will prescribe the terms and conditions of any
such agreement.

Further information on the conditions under which disclosures and exploitation
may take place is available from the Head of the School of Computer Science.

15

Acknowledgements

I would like to express a sincere thank you to Carole for having taken the bet with
Mark and for being all that she is. Also many thanks to advisor Alan Rector, external
consultant Uli Sattler, my collaborators, dear friends, my parents, loving family and
colleagues inside and outside of the Information Management Group. I gratefully
acknowledge the support from EPSRC and WUN.

16

Chapter 1

Introduction

As more scientific resources become available on the World Wide Web, scientists in-
creasingly rely on Web technology for performing in silico (i.e. computerised) ex-
periments. With the publication of scientific resources as services on the Web or as
services on the computational Grid or Cloud, scientists are making a shift from tradi-
tionally copying and pasting their data through a sequence of Web pages offering those
resources, to the creation and use of distributed processes for experiment design, data
analysis and knowledge discovery. Research councils in various countries have set out
to build a global infrastructure to support this under the banner of e-Science. e-Science
translates the notion of virtual organisations into a customised Grid or Cloud middle-
ware layer for scientists, thereby aiming to increase collaboration within and between
scientific fields [HT02][GDE+07]. Workflow techniques are an important part of in

silico experimentation, potentially allowing the e-Scientist to describe and enact their
experimental processes in a structured, repeatable and verifiable way.

For example, the myGrid project1 has produced the open source Taverna work-
flow editor2 to build workflows in bioinformatics. Taverna provides access to hun-
dreds of distributed services which offer in excess of thirteen hundred operations.
To date scientists have produced over five hundred workflows with Taverna, some of
which orchestrate up to fifty distributed services. These resources have been developed
by users and service providers distributed throughout the global biology community.
Figure 1.1 shows an example of a Taverna-made workflow which gathers informa-
tion about genetic sequences in support of research on Williams Beuren syndrome
(WBS) [STW+04]. The diagram shows a bioinformatics pipeline, producing lots of

1Web site: www.mygrid.org.uk
2Web site: taverna.sf.net

17

www.mygrid.org.uk�
taverna.sf.net�

CHAPTER 1. INTRODUCTION 18

Figure 1.1: Part of a Taverna workflow to annotate genetic sequences.

data from a limited number of inputs (the left and right boxes) based on a set of au-
tonomous distributed services.

We are now witnessing how scientists have started re-using and propagating in sil-

ico experiments as commodities and “know-how” in their own right. To cater for the
re-use and discovery of in silico experiments on the scale of the Web, the e-Science
infrastructure will need to expand its current handling of the workflow life cycle. An
early example of such an infrastructure is the Web-based collaboration and sharing
platform developed in the myExperiment project.3We see workflow re-use and discov-
ery as a way of bootstrapping a “Web of Science” by stimulating the dynamics of
sharing and re-using experimental components in the scientific community.

1.1 Research questions

The key question asked in this thesis is:

What is scientific workflow re-use and discovery and can we support it automati-

cally?

Four research questions were pursued to address this central question:

Q1 What requirements should be fulfilled for workflow re-use and discovery to occur
in science?

To be able to support the process of scientific workflow re-use and the sub-
problem of discovering relevant workflows, we need to understand what drives
the process. We wish to determine the necessary conditions for re-use and dis-
covery.

3Web site: www.myexperiment.org

www.myexperiment.org�

CHAPTER 1. INTRODUCTION 19

Q2 How do scientists re-use and discover workflows?

Workflow re-use and discovery is a process performed by scientists. By observ-
ing how they go about the process and by capturing their behaviour, we gain
additional insight into the process.

Q3 Can automated discovery techniques support workflow re-use and discovery?

Once an understanding of the process of workflow re-use and discovery is avail-
able, we can consider the design and use of automated techniques to support
it. Whether the techniques are effective should be assessed by measuring their
performance on tasks usually performed manually by scientists.

Q4 How does having multiple models of computation in a workflow affect workflow
re-use?

Workflows are computational artifacts rooted in a particular model of computa-
tion. Q1 - Q3 assume that a single model of computation exists, in accordance
with the current state of the art. However, depending on how scientists model an
in silico analysis, they may choose and combine different models of computa-
tion. The choice of model of computation affects the re-usability of a workflow,
but its impact is currently not well understood.

1.2 Thesis structure

The structure of the thesis reflects the four research questions. They are addressed in
order.

Chapter 2 defines the problem of workflow re-use and repurposing. It explains the
phenomenon of workflows in science and presents a requirements analysis for work-
flow re-use drawn from surveys and interviews with scientists and scientific program-
mers.

Chapter 3 defines and scopes the workflow discovery problem, presents technical
requirements and categorises related work on discovery techniques.

Chapter 4 reports on a series of user experiments set up to capture and model
behaviour during re-use and discovery for one class of scientists, namely bioinformati-
cians. It leads to a series of human-made benchmarks.

Chapter 5 presents the range of automated techniques we considered to support the
re-use and discovery problem. The techniques vary in the level of detail at which they

CHAPTER 1. INTRODUCTION 20

process workflow information and the formalism they expect this information to be in,
either natural language or annotation in a Semantic Web language.

Chapter 6 evaluates to what extent the automated techniques support the re-use and
discovery of workflows by bioinformaticians. The benchmarks of Chapter 4 are central
to their assessment.

Chapter 7 investigates the final research question by analysing the link between
multiple models of computation. A classification is built showing valid re-use cases
between workflows that adhere to different models of computation.

Chapter 8 concludes and sets out avenues for future research.

1.3 Publications

Some of the material in the thesis is based on previous publications.

The requirements analysis in Chapters 2 and 3 is based on the following papers and
book chapters. With the exception of Ulrike Sattler, all co-authors are collaborators
from the myGrid project.

• Antoon Goderis, Ulrike Sattler, Phillip Lord, and Carole Goble. Seven bottle-

necks to workflow reuse and repurposing. In Int. Semantic Web Conference
ISWC05, volume 3792, pages 323337, Galway, Ireland, 2005.

• Chris Wroe, Carole Goble, Antoon Goderis, Phillip Lord, Simon Miles, Juri
Papay, Pinar Alper, and Luc Moreau. Recycling workflows and services through

discovery and reuse. Research articles. Concurr. Comput. : Pract. Exper.,
19(2):181194, 2007.

• Carole Goble, Katy Wolstencroft, Antoon Goderis, Duncan Hull, Jun Zhao,
Pinar Alper, Phillip Lord, Chris Wroe, Khalid Belhajjame, Daniele Turi, Robert
Stevens, Tom Oinn, and David De Roure. Semantic Web: Revolutionizing
Knowledge Discovery in the Life Sciences, chapter Knowledge Discovery for

Biology with Taverna: Producing and Consuming Semantics in the Web of Sci-

ence. 2006.

• Tom Oinn, Mark Greenwood, Matthew Addis, Nedim Alpdemir, Justin Ferris,
Kevin Glover, Carole Goble, Antoon Goderis, Duncan Hull, Darren Marvin,
Peter Li, Phillip Lord, Matthew Pocock, Martin Senger, Robert Stevens, Anil

CHAPTER 1. INTRODUCTION 21

Wipat, and Chris Wroe. Taverna: Lessons in creating a workflow environment

for the life sciences. Concurrency and Computation: Practice and Experience:
Special Issue on Scientific Workflows, 2005.

• Tom Oinn, Peter Li, Douglas B. Kell, Carole Goble, Antoon Goderis, Mark
Greenwood, Duncan Hull, Robert Stevens, Daniele Turi, and Jun Zhao. Work-
flows for e-Science: scientific workflows for Grids, chapter Taverna/myGrid:

Aligning a Workflow System with the Life Sciences Community, pages 300-319.
Springer, 2007.

A user survey reported on in Chapter 2, one of the small user experiments in Chap-
ter 4 and a graph-matching based technique presented in Chapter 5 were published
together with Peter Li and Carole Goble.

• Antoon Goderis, Peter Li, and Carole Goble. Workflow discovery: the problem,

a case study from e-science and a graph-based solution. In IEEE Int. Conf. on
Web Services, Chicago, USA, September 18-22 2006.

• Antoon Goderis, Peter Li, and Carole Goble. Workflow discovery: requirements

from escience and a graph-based solution. International Journal of Web Services
Research (JWSR), Accepted for publication.

Work on the suitability of the OWL language for workflow discovery, joint with
Ulrike Sattler and Carole Goble, is presented in Chapter 5 and published as below.

• Antoon Goderis, Ulrike Sattler, and Carole Goble. Applying descriptions logics

for workflow reuse and repurposing. In International Description Logics Work-
shop, Edinburgh, Scotland, 2005.

Finally, the material in Chapter 7 is the result of a collaboration with Christopher
Brooks and Edward E. Lee from the Ptolemy II project, Ilkay Altintas from the Kepler
project and Carole Goble.

• Antoon Goderis, Christopher Brooks, Ilkay Altintas, Edward E. Lee, and Carole
Goble. Composing different models of computation in Kepler and Ptolemy II.

In Proc. of the 2nd International Workshop on Workflow Systems in e-Science
(WSES 07) in conjunction with the International Conference on Computational
Science, Beijing, China, May 27-30 2007.

CHAPTER 1. INTRODUCTION 22

• Antoon Goderis, Christopher Brooks, Ilkay Altintas, Edward A. Lee, and Carole
Goble. Composing heterogeneous models of computation in Kepler and Ptolemy

II. Future Generation Computer Systems (FGCS), Accepted for publication.

1.4 External contributions

This thesis is the original work of the author except for the following.
In Chapter 3, the formal definition of the matching conditions and the workflow

discovery tasks was developed in collaboration with Khalid Belhajjame.
In Chapter 5, regarding the Description Logics section, Ulrike Sattler was instru-

mental for the technical analysis.
In Chapter 7, Edward A. Lee did the bulk of the technical analysis.

Chapter 2

Workflows, workflow re-use and
repurposing

Throughout the thesis, we refer to scientific workflows, workflow re-use and workflow
repurposing. The chapter clarifies what we mean by these terms. There are two major
sections to the chapter:

• Workflows in science. This motivates the use of workflows by scientists, analyses
the anatomy of a scientific workflow and provides the formal definition of a
workflow used throughout the thesis.

• Workflow re-use and repurposing. Practical case studies of workflow re-use are
presented from several disciplines. They lead to a set of requirements for work-
flow re-use and making the distinction between re-use and repurposing.

2.1 Workflows in science

Scientists are facing new challenges, which leads them to the use of workflows. In this
section, we clarify their motives, analyse what defines a scientific workflow and adopt
a formal definition of a workflow for our purposes.

2.1.1 Why workflows in science?

The concept of a workflow is making inroads in science due to its central role as the
“glue” to connect data management, analysis, simulation and visualisation services
over often voluminous and structurally and semantically complex, distributed scientific

23

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 24

data and services [GL05]. Special issues of journals1 and dedicated workshops report
on the state of the art of workflow systems for “e-science.”2

Case study: workflows in bioinformatics

To make the concept of a scientific workflow more concrete, let us consider the impact
of a workflow on the activities of one type of scientist: the bioinformatician. Bioin-
formatics is but one discipline of science. The advantages identified below hold across
disciplines, however.

Analyses of data are undertaken in bioinformatics in order to test a hypothesis,
derive a summary or search for patterns [STW+04]. These procedures involve the
use of local and remote resources which may be information repositories such as the
EMBL3 and Swiss-Prot4 databases, or computational analysis tools like BLAST5 and
ClustalW.6 Such procedures are workflows where the flow of data between resources
has been directed in a pre-defined manner [OGA+05].

The increasing accessibility of these resources as Web Services in addition to the
availability of workflow technology has enabled bioinformatics scientists to explic-
itly define how data analyses should be executed as scripts which can then be stored
for later use and shared within the life sciences community [STW+04] [LHJ+04]
[FHW+07]. Figure 2.1 shows the example of a workflow to retrieve genetic sequence
based on an identifier associated with a microarray experiment. The pane on the right
shows the third-party services available to construct the workflow with.

In a survey with 24 bioinformaticians from 19 different research laboratories (see
Appendix A for the list of participants), we found that workflows have been found
applicable and built for almost every area of bioinformatics. The majority of par-
ticipants use workflows for sequence analysis (61.9%), genome annotation (42.9%),
comparative genomics (23.8%) and analysis of gene expression (23.8%). Other ap-
plications include modelling biological systems (14.3%), computational evolutionary
biology (14.3%) and protein-protein docking (9.5%). Other mentioned areas were the

1See SIGMOD Record (2005), Journal of Grid Computing (2005), Scientific Programming (2006),
Concurrency and Compuration: Practices and Experience (2006) and Future Generation Computer Sys-
tems (2008).

2See the NSF Workshop on the Challenges of Scientific Workflows (2006)[GRD+07], WWWF at
GridAsia2007 and the Workflow Systems for E-Science workshop series (2005-2007).

3Web site: www.ebi.ac.uk/embl
4Web site: www.ebi.ac.uk/swissprot
5Web site: www.ncbi.nlm.nih.gov/blast
6Web site: www.ebi.ac.uk/clustalw

www.ebi.ac.uk/embl�
www.ebi.ac.uk/swissprot�
www.ncbi.nlm.nih.gov/blast�
www.ebi.ac.uk/clustalw�

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 25

Figure 2.1: A bioinformatics workflow loaded in the Taverna workbench.

measurement of biodiversity, analysis of regulation, analysis of protein expression,
analysis of mutations in cancer, prediction of protein structure and text mining.

Advantages of workflows

There are a number of advantages associated with using workflow technology for the
analysis of scientific data and for bioinformatics data specifically, as opposed to the
traditional manually cutting and pasting of data between forms in Web browsers.

1) Automation. The increase in the volume of data year upon year due to the con-
tinuous generation of new primary and derived data is well recognised [HT02]. Auto-
mated analyses of these data is essential since manual analysis cannot keep up with the
pace of its generation. In addition, the data to be analysed require computer processing
power exceeding the capabilities of an individual scientist’s workstation. This leads to
increasing demands for services which offer easy access to compute power. Workflow
systems can help with the high throughput analysis of data. Firstly, workflows can
automate the flow of data between analysis services. Secondly, stored workflows can
be enacted on demand so that the latest data can be used in the analysis as well as new
input data.

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 26

2) Fault tolerance. Issues with the reliability of services are particularly prevalent
in the area of bioinformatics [LPA06]. Academic and non-commercial organisations
deploy Web services for public use by scientists in the life sciences community without
any prior service level agreements. Such services are used by scientists knowing of
their unreliability despite the fact that they may not always be available [STW+04]. It
is therefore essential that such scientific workflows are executed using the most reliable
of services especially if workflows are long lived during their execution. Workflow
systems potentially offer sophisticated caching, retry and fail-over mechanisms.

3) Recording of provenance. The building of reliable workflows is reliant upon data
in the form of performance metrics about services which may be captured during the
enactment of workflows. This information is provenance which identifies the source
and processing of data by recording the metadata and intermediate results associated
with the workflow. This type of information provides a useful audit trail since its anal-
ysis can determine the origin of erroneous or unexpected results which can sometimes
be produced by workflow processes. Provenance information covers other types of in-
formation about the workflow too. For example about who built the workflow, why it
was built, when it was last run, what the results were etc. See e.g. [ZWG+04] for an
overview. Workflow systems potentially offer an infrastructure to manage provenance

information.
4) Best practice. Workflows can be complex especially if many services are used in

the analysis pipeline. The construction of such complex workflows requires substan-
tial intellectual effort since intimate knowledge of the services used in the workflows
is required from a syntactic and semantic standpoint for connecting the flow of data
between services in a meaningful manner. In addition, analysis tools such as Blast and
ClustalW are sophisticated services requiring extensive parameterisation in their use.
Workflows explicitly capture the values of these parameters as well as other metadata

used by the workflow author showing its best practice which can then be shared within
the community.

The advantages need to outweigh a number of disadvantages in order for scientists
to adopt workflows. Workflows come at a price: scientists need to acquire the skill
set to design workflows and to manage larger data sets. The work in the thesis aims
to support scientists in the design task by examining the potential for workflow re-use
and discovery.

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 27

2.1.2 Anatomy of a scientific workflow

Workflows come in many varieties. To clarify which class of workflow we target in
this thesis, we provide a brief overview of the scientific workflow landscape.

Business versus scientific workflows

What is a scientific workflow? In an introduction to a special section of SIGMOD
Record on Scientific Workflows [GL05], Ludaescher and Goble introduce the concept
by contrasting scientific workflows with business-oriented workflows. They write that
scientific workflows are:

• typically data-centric, dataflow-oriented “analysis pipelines,” as opposed to task-
centric and control-flow oriented business workflows;

• potentially very computationally expensive;
• metadata and annotation-intensive, since the repurposing of a scientific data

product in another scientist’s study requires detailed, and preferably machine-
processable, context and data provenance information;

• written by scientists, who are rather individualistic and are more likely to cre-
ate their own “knowledge discovery workflows,” whereas in business users are
commonly restricted to using carefully designed and predetermined workflows
in a constrained way.

Within the setting of supporting science, there is a lot of variety in workflow sys-
tems [WGG+07]. They vary in:

• the workflow languages they use;
• the kinds of domain and scientific process they represent;
• workflow deployment and execution environments;
• the tools and mechanisms for supporting workflow composition;
• the granularity of the services they orchestrate; and
• the way their workflows are used.
A comprehensive analysis of different scientific workflow environments is outside

of our scope. See [YB05] for a survey. We limit ourselves to a discussion of the
diversity found in workflow languages, which is lacking in [YB05]. We discuss two
factors which contribute to the diversity: (i) the variety in levels of abstraction that
workflow systems support and (ii) the models of computation they choose to govern
the interaction between services in a workflow.

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 28

Levels of abstraction

Scientific workflows are described, configured and managed at different levels of ab-
straction to support the different phases in their lifecycle. The workflow lifecycle en-
tails the following phases:

1. During design, while the workflow is still being designed.
2. Post design, pre-enactment, as either a finished, concrete workflow where the

required resources are known, or as a finished yet abstract workflow (also known
as a template) whose resources still will need to be decided dynamically during
enactment.

3. During enactment, when intermediary results come about.
4. Post enactment, when all results are available.
Several workflow representations exist to support these four phases. One of the

more elaborate formal schemes to describe a scientific workflow is proposed by the
KWf-Grid framework [NHG06]. A workflow is described in terms of five levels of ab-
straction, corresponding to increasingly concrete workflows: (i) User request, (ii) Ab-
stract workflow, (iii) Service candidates, (iv) Service instances and (v) Grid resources.
The levels are shown in Figure 2.2.7

The KWf-Grid framework focuses on describing workflows during the design and
enactment phases of the workflow lifecycle. One of the more elaborate formal schemes
to describe and relate the results of workflows post enactment is proposed by the PA-
SOA framework for managing provenance information [Gro07a].

Metadata descriptions can be associated with the workflow in each phase to facili-
tate retrieval and enactment. Workflow systems differ on the levels of abstraction they
focus on, how the levels are represented and how the levels interact. Consequently,
their workflow languages are targeted at supporting different levels of abstraction. In
the mentioned KWfGrid, each of the abstraction levels uses the same workflow de-
scription language, so it is possible to mix several levels of abstraction in one workflow.
Most workflow languages however concentrate on specific levels. Some focus on the
specification of abstract workflows and service candidates (e.g. WINGS [GDE+07]),
others on orchestrating service instances (e.g. Taverna’s Scufl language [OGA+05] or
BPEL8 (the Business Process Execution Language)); still others on scheduling Grid re-
sources (e.g. DAGMan9). Provenance management systems concentrate on managing

7Origin: the KWfGrid Web site at www.gridworkflow.org/kwfgrid/gwes/docs/
8Web site: www.oasis-open.org/committees/wsbpel
9Web site: www.cs.wisc.edu/condor/dagman

www.gridworkflow.org/kwfgrid/gwes/docs/�
www.oasis-open.org/committees/wsbpel�
www.cs.wisc.edu/condor/dagman�

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 29

Figure 2.2: Five workflow layers of abstraction.

workflow results (see [Zha07] for an overview).
For the purposes of the thesis, we focus on workflows described at the level of their

service instances, also known as concrete workflows (as opposed to abstract work-
flows).

Models of computation

Another major distinguishing factor between workflow languages is the model of com-
putation adopted to orchestrate distributed resources. A model of computation (MoC)
is a formal abstraction of execution in a computer.

1) A single model of computation. Most workflow environments fix the model
of computation available to an e-scientist. Different experiments are modelled more
cleanly with different MoCs because of their relative expressiveness and efficiency.
Different uses of MoCs for scientific workflows include data-flow for pipeline compo-
sitions, e.g. gene annotation pipelines; continuous-time ordinary differential equation
solvers, e.g. for Lattice-Boltzmann simulations in fluid dynamics; and finite state ma-
chines for modelling sequential control logic, e.g. in clinical protocols or instrument
interaction. Many scientific workflow systems have adopted a data-flow paradigm,
corresponding to variants of functional programming languages [YB05] [GL05]. For
example, the MoC underlying the Taverna system’s Scufl language corresponds to a

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 30

lambda calculus with a list monad [Tur06]. The data-flow paradigm, however, is not
the only possible style of modelling workflows. Several projects rely on the semantics
of the BPEL language, for instance the CaGrid, AstroGrid or CancerGrid projects.10

In this thesis we assume the use of the data-flow paradigm. We relax this restriction in
Chapter 7 to consider the use of multiple models of computation.

2) Multiple models of computation. The above workflow systems leave little flexi-
bility to change model of computation as an experiment evolves. There are scenarios
where a combination of MoCs is useful, e.g. a mixture of a time dependent differen-
tial equation model with dataflow. Most environments do not support experiments that
mix multiple MoCs. A notable exception is the Kepler system [LAB+05] which allows
for hierarchical composition of heterogeneous models of composition. Similarly, it is
not known whether and how different workflow systems, adhering to different MoCs,
can be used together. This interferes with the vision for intra- and inter-disciplinary
collaboration in e-science.

For example, in genomic biology, gene annotation pipelines provide useful input
to systems biology simulation models. Candidates for drug development found in
cheminformatics simulations are plugged into bioinformatics annotation pipelines to
retrieve the candidates’ hazardous interactions within cells. The inability to mix MoCs
also makes it more difficult to mix software workflows with physical systems such as
sensor networks and electron microscopes, which have continuous dynamics. More-
over, mixing specialized MoCs for visualization (e.g. for animation) with, for exam-
ple, time-based simulation, makes for more efficient execution and for better models.
In addition, if we can mix MoCs, then we can introduce computational steerage of
workflows. Representative use cases include: (i) selective extraction and analysis of
proteins from public databases, combining finite state machines and dataflow and (ii)
dynamically adapting model control parameters of Lattice-Boltzmann simulations in
fluid dynamics by combining finite state machines and continuous-time ordinary dif-
ferential equation solvers.

In such scenarios, using an integrated environment that supports mixing MoCs en-
ables integrated provenance collection. In the fluid dynamics example, the provenance
includes dynamic changes in the overall model as well as parameter sweeps within
each model, covering the full range and variability.

We assume the existence of multiple models of computation in a workflow in Chap-

ter 7.
10A similar dichotomy is also present in business workflow systems; see the recent survey by [MHH].

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 31

2.1.3 Formal definition

Summarising the assumptions we outlined above, this thesis only considers scientific
workflows with the following properties:

Data flow oriented Given the target domain, the representation makes data an impor-
tant element in the definition. There is no notion of time and no notion of events.

Workflow design We focus on concrete workflows, where it is known at design time
which services will be used.

Semantics are optional The workflow definition may contain semantic (machine pro-
cessable) descriptions. Details on the contents and different formalisms for these
descriptions are given within.

Homogeneous execution semantics We focus on data flow workflows only and do
not mix in other formalisms in a workflow definition. We relax this criterion in
Chapter 7.

To simplify our discussion, we also assume the following:

Web services only We assume all services contained within the workflow can be ex-
posed as a Web service. Workflows typically orchestrate Web services in con-
junction with other kinds of services: other workflows, local components, dif-
ferent types of legacy distributed services (Taverna for instance accesses eight
different types [LAWG05]); even humans are modelled as part of the process.
Typically, a type of component is invented that generalises across all service
types. For example, in the Taverna 2 system11 and the Inforsense system12, these
components are called Activities; in Kepler they are Actors.13 We assume that
these components can be cast in terms of a Web service operation, based on the
Web Service Definition Language WSDL, the standard for the description of a
Web Service interface.14 This would be the wrong assumption to make when
other service paradigms are in use that cannot be cast elegantly in WSDL, e.g.
REST-style components.

11Web site: taverna.sf.net
12Web site: www.inforsense.com
13Web site: www.kepler-project.org
14Web site: www.w3c.org/2002/ws/desc

taverna.sf.net�
www.inforsense.com�
www.kepler-project.org�
www.w3c.org/2002/ws/desc�

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 32

Opaque nested workflows We assume that any sub-workflows present in a workflow
are represented as a regular service where no knowledge is available about the
internal structure of that service.

With the above restrictions in mind, this section formally defines what we mean by
a workflow. We define a workflow w as the following triple:

W = 〈nameW, OP, DL〉

where nameW is a unique identifier for the workflow, OP is the set of operations from
which the workflow is composed, and DL is the set of data links connecting the opera-
tions in OP. In what follows we discuss the contents of the following workflow elements

in detail:

• operations which have input and output parameter types;

• data links;

• overall input and output parameter types and

• workflow fragments.

Operation An operation op ∈ OP is defined as:

op = 〈nameOp, loc, in, out〉

where nameOP is the unique identifier for the operation, loc is the URL of the Web
service that implements the operation, and in and out are two sets representing the
input and output parameter types of the operation, respectively. In our description of
an operation, there is no description of the relationship between inputs and outputs.

Parameter types A parameter type provides information on the structural type and
semantic type of a given operation input type (belonging to the set op.in) or a given
operation output type (belonging to op.out). A parameter type is defined by the couple:

〈op, p〉

where op is the operation to which p belongs, and p being the triple:

p = 〈nameP, str type, sem type〉

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 33

with nameP as the parameter type’s identifier (unique within the operation) and str type

as the parameter type’s structural data type. We assume an XML type system, so that
parameter data types may be either simple types, such as xs:string and xs:int, or complex
types, built from simple ones. sem type specifies the semantics of the parameter type.
While the structural data type of a parameter type can be retrieved from the WSDL
document describing the Web services, its semantic type corresponds to an ontology
concept that is chosen when annotating the semantics of the Web service. We do not
assume that the semantic types contain information about pre- and postconditions. We
also do not assume they contain knowledge of the relationship between inputs and
outputs.

Data links Let IN = ∪(op∈OP)op.in be the set of input types of all the operations that
constitute a workflow, and OUT = ∪(op∈OP)op.out be the set of output types of all its
operations. The set of data links connecting the workflow operations must then satisfy:

DL ⊆ (OP × OUT) × (OP × IN)

A data link relating the output type o of the operation op1 to the input type i of the op-
eration op2 is therefore denoted by the quadruple (op1,o,op2,i). If (op1,o,op2,i) belongs
to DL then (op1, o) is an output of op1 and (op2, i) is an input of op2.

Figure 2.3 shows the example data flows W1 and W2 visualised as Taverna work-
flows. The set of operations for W1 corresponds with W1.OP = {op1, op2, op3} and for
W2 with W2.OP = {oq1, oq2, oq3}. The datalinks are defined for the first workflow by
W1.DL = {< op1, o1, op2, i2 >, < op1, o1, op3, i3 >}. For the second workflow, the
set equals W2.DL = {< oq1, o1, oq3, i2 >,< oq1, o2, oq3, i3 >,< oq2, o4, oq3, i2 >

}. Note that the diagram only depicts identifier names – no information is included
with respect to an operation’s location or the parameters’ syntactic and semantic types
(for brevity’s sake we do not include these in the text either).

Overall input and output types For any given workflow, those input types to op-
erations which are not connected to any data link are considered to be the input types
to the workflow as a whole. Similarly, the set of operation output types which are not
connected to any data link are considered to be the output types from the whole work-
flow. Given a workflow W, we use the terms W.in and W.out to respectively denote the
input parameter types and the output parameter types of W. In the example of Fig. 2.3,

W1.in = {< op1, i1 >,< op2, i3 >},

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 34

Figure 2.3: Data flow workflow examples based on a Taverna layout.

W1.out = {< op2, o2 >,< op2, o3 >, < op3, o4 >,< op3, o5 >},
W2.in = {< oq1, i1 >,< oq1, i2 >,< oq2, i3 >,< oq2, i4 >} and
W2.out = {< oq2, o3 >,< oq2, o5 >,< oq3, o6 >}.
For simplicity, henceforth we shall write “parameter” as shorthand for “parameter

type,” and similarly we will speak of “inputs” and “outputs” when discussing “input
types” and “output types.”

Workflow fragments Workflows have workflow fragments. To define these, we in-
troduce an auxiliary function ContainsW , defined as:

ContainsW : (W × W) −→ Boolean

where

ContainsW (W1,W2) =





true W1.OP ⊆ W2.OP ∧W1.DL ⊆ W2.DL

false otherwise.

We define a workflow F to be a workflow fragment of workflow W when the set
of operations and data links of workflow W subsumes those of workflow F. In other
words, when

ContainsW (F, W) = true.

When the condition of shared datalinks (i.e., the same ordering between services)
is dropped, we obtain a weaker notion of what a fragment is. ContainsOps is defined
as:

ContainsOps : (W × W) −→ Boolean

where

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 35

ContainsOps(W1,W2) =





true W1.OP ⊆ W2.OP

false otherwise.

2.2 Workflow re-use and repurposing

A key challenge for scientific workflows lies in supporting the rapid assembly of work-
flows from disparate services and their re-use in various scenarios. Service re-use is a
desirable goal of Service Oriented Architectures and Web services middleware. Work-
flow re-use has received less attention, yet has the potential to: i) reduce workflow
authoring time by less re-inventing of the wheel; ii) improve workflow quality through
re-use of established and validated workflows rather than re-invention of new, and po-
tentially error-prone, ones.

2.2.1 Definition

We distinguish between workflow re-use and the repurposing of workflows.

• A user will re-use a workflow or workflow fragment that fits their purpose and
could be customised with different parameter settings or data inputs to solve
their particular scientific problem.

• A user will repurpose a workflow or workflow fragment by finding one that
is close enough to be the basis of a new workflow for a different purpose and
making small changes to its structure to fit it to its new purpose.

Note that this definition implies that re-use at one level of workflow abstraction may
lead to repurposing at another level of workflow abstraction. For instance, the re-use
of an abstract workflow by changing a parameter may lead to structural changes in the
concrete workflow associated with that workflow (and thus implies its repurposing).
A practical example is the re-parametrisation of an abstract workflow that performs
pair-wise sequence similarity to do multiple sequence similarity instead. This might
be realised at the level of the concrete workflow by replacing a BLAST Web service
with a ClustalW Web service.

Figure 2.4 provides an example of repurposing based on two dataflows. It shows
the insertion of service c from Workflow 2 in between the previously connected ser-
vices a and b of Workflow 1. In terms of the underlying bioinformatics, Workflow 1

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 36

Figure 2.4: Example of an insertion based on two Taverna workflows

is extended with the Transeq service, which changes the workflow from a pipeline for
measuring similarity of DNA sequences into one that analyses similarity of peptide
sequences.

Observe how Workflow 1 provides useful input to locate Workflow 2 in a reposi-
tory: one can concentrate the search on those service compositions that acccept service
a’s output and produce service b’s input. Finding compatible insertions is one type of
discovery that supports the repurposing of dataflows. The other types are the discovery
of replacements and the discovery of extensions that append or prepend a workflow.

While re-use is intuitively well understood, repurposing is less so. It inherently
requires metrics for measuring similarity, and repurposing actions to rework the work-
flow by adding, removing, or replacing steps, or by altering the control structure. Re-
purposing may involve techniques to provide a user with suggestions as to what are
the relevant pieces of workflow for their experiment, like “Based on the services and
structure of your workflow, it looks like you are building a gene annotation pipeline.
Other users have found this collection of fragments useful for that.”

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 37

2.2.2 Case studies in workflow re-use

To illustrate the concepts, we present case studies of workflow re-use drawn from
different scientific disciplines. Based on these we formulate necessary requirements
for workflow re-use.

We start with several case studies from the bioinformatics domain. Cases from
other disciplines are also presented, with less detail. The latter stem from the pharma-
ceutical industry, earth sciences, geology, fluid dynamics and chemistry.15

To obtain the data, we collaborated with biologists, bioinformaticians and devel-
opers that use the myGrid project’s Taverna workbench. We also selected a cross-
section of middleware projects from the e-Science programme in the United King-
dom, which was the first of its kind [HT02]. Further, we interviewed core develop-
ers from InforSense (a spin-off from the DiscoveryNet e-Science project [SEG+03]),
Geodise [TCS+04], Triana [MWG04], the Sedna project and people from the USA-
based Kepler project [LAB+05].

Bioinformatics

Taverna users have built in excess of 500 workflows to support them in doing bioinfor-
matics. Through our interactions with the community, (i) we identified practical cases
of workflow re-use and (ii) we collected user experiences of re-use.

1) Workflow re-use cases. We have worked closely with members of three bioin-
formatics groups to observe workflow re-use. They actively research the following
topics:

1. Investigation of Williams-Beuren Syndrome [STW+04]. Members of St Mary’s
Hospital Academic Unit of Medical Genetics, at the University of Manchester,
have developed workflows (i) to identify any newly deposited and relevant genome
sequences in public sequence databases (ii) to characterise any genes in those
new sequences using analysis tools (iii) to gather related information from other
databases (iv) likewise to characterise proteins that will be produced from those
genes.

2. Investigation of the genetic basis of Graves’ Disease [LHJ+04]. Members of
Institute of Human Genetics at the University of Newcastle have developed a
set of workflows to statistically analyse data showing the changed expression of
genes in affected thyroid tissue, followed by characterisation of those genes.

15The survey form is available from www.myexperiment.org/benchmarks

www.myexperiment.org/benchmarks�

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 38

3. Investigation of Trypanosomiasis (sleeping sickness) resistance in cattle [FHW+07].
Members of the Bio Health Informatics Group at the University of Manchester
built workflows which identified a metabolic pathway for which its correlating
gene is believed to play a role in resistance to Trypanosomiasis. Manual analy-
sis on microarray and Quantitative Trait Locus (QTL) data previously failed to
identify this gene as a candidate.

Figure 2.5 shows the witnessed re-use of workflow fragments. Fragments have
been re-used between researchers that are active within the same research project. Re-
use also occurred between groups from separate projects. In all cases, the workflows
were discovered by word of mouth.

• In the case of the Graves workflow, the workflow took more than a year to create.
During the process of building it, 56 workflows were created, most of which are
overlapping versions and re-used in one shape or other in the other versions. The
largest of these workflows contains 45 services.

• The research group who produced the Williams’ syndrome workflow [STW+04]
have seen a dramatic drop in workflow authoring time through the ability to
repurpose workflow fragments from the Newcastle group.

• The figure shows the re-use of fragments between research groups active in the
same project (from Graves to Williams), as well as re-use between affiliated

research projects (from Williams to Trypanosomiasis). The Williams bioinfor-
maticians were keen to extend their workflow with a protein annotation pipeline,
as well as to introduce microarray analysis functionality. In turn, the Williams
workflow itself became the subject of re-use for the Trypanosomiasis workflow,
in particular the microarray analysis and gene prediction fragments shown on
the figure. In case of the microarray fragment, in effect one sees the emergence
of workflow fragment propagation. New re-use of fragments from the Williams
workflow is planned to support research on the Aspergillus fungus.

• The workflow built to investigate Trypanosomiasis in cattle was re-used without

change to run over a new dataset: Trichuris muris - the mouse whipworm. This
identified the sex-dependent biological pathways involved to expel a parasite in
mouse, which a two-year manual study previously was unable to verify.

• The arrows in the figure do not do justice to the difficulty it took to re-use the
various fragments. Discovery of fragment functionality happened by word of
mouth, and comparing and integrating fragments took extensive discussions be-
tween the workflow authors. Repurposing the workflow to investigate a different

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 39

Microarray analysis

Trypanosomiasis

Gene prediction

Microarray analysis

Protein annotation

SNP design

Graves’ disease

Versioning

project
Intra

Protein annotation

Microarray analysis

Gene prediction

DNA sequence comparison

Inter project

Williams’ syndrome

Aspergillus

Gene prediction

DNA sequence comparison

project
Inter

Microarray analysis

Trichuris muris

Gene prediction

Figure 2.5: Different types of workflow re-use illustrated by a scenario from bioinfor-
matics.

species meant the structure had to be adapted: certain services had to be re-
placed (for example, some gene prediction services are species-specific), others
removed and still others added.

2) Workflow re-use experiences. We also queried a bigger sample of the bioinfor-
matics academic community. In a survey with 24 bioinformaticians from 19 research
laboratories (see Appendix A for the list of participants), we found that out of the 19
participants who indicated having built workflows before, 15 have re-used workflows.
Of those 15 participants, 7 re-used workflows from third parties, 4 from a fellow re-
search group member, 4 from a project collaborator and 2 from a colleague at the
institute.

The respondents were polled about their practical experiences during re-use:
• All respondents believed that in most cases there is not enough documentation

to understand a workflow.
• Ninety percent of respondents believed there are no effective search tools to find

relevant workflows.

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 40

• For three quarters of respondents, some of the services in a workflow were (al-
ways or at least often) non re-usable due to the service being local to the original
author. The same sentiment existed with respect to services being down.

• The majority of respondents believed there is no way of trusting the analysis

performed by a workflow.
• Little under half of the respondents believed that often there are not enough

workflows around, so they do not look for workflows.
All survey participants were asked about their reservations for sharing their work-

flows for re-use by others. They expressed the following main concerns:
1. Receiving proper acknowledgements for the work (36.8%) and
2. The workflow doing the job, but not being a piece of software they are very

proud of (31.6%).
The following factors were deemed less important:

1. Being scooped (i.e. beat to obtaining results) by their own doing (15.8%);
2. Sharing the data that is obtained from the workflows (15.8%);
3. Sharing the data that feeds into the workflows (10.5%);
4. The brittleness of shared workflows, either due to the use of non re-usable local

services or due to the volatility of remote services (10.5%);
5. Being able to share the workflow without others being able to establish how it

works exactly (5.3%).
Other than bioinformatics, we also found examples of re-use in other domains.

Pharmaceuticals

Clients of InforSense, a commercial enterprise, have been building scientific work-
flows for several years. They exchange and extend workflows based on corporate in-
tranet servers and e-mail lists. Given that these workflows are based on proprietary
technology and often contain trade secrets, sharing with external parties has been lim-
ited.

Earth sciences

In Triana, the GEO power spectrum, a small composition of Java classes aimed at
the direct detection of gravitational waves, has been shared between different research
groups in the same department at Cardiff University.

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 41

Geology

The Kepler project so far has around 30 users which have built 10 workflows from
a registry of 20 services. They have seen the redeployment of GRASS services for
geospatial data management developed in one project (SEEK) to form a new pipeline
for another project (GEON). This redeployment required a slight adaptation of the
control flow.

Fluid dynamics

Geodise relies on the Matlab software environment for the orchestration of local Mat-
lab functions which wrap distributed Grid resources. It offers access to some 150 func-
tions, based on which 10 workflows were built to date. It re-uses both configurations
and assemblies of Matlab functions (i.e. scripts) described by various authors.

Chemistry

The Sedna project at University College London has built a compute intensive work-
flow for chemistry, generating up to 1200 service instances concurrently. No re-use of
this workflow has occurred. Sedna is the only project in our sample to use BPEL.

In summary, we observed that re-use of workflows and fragments of workflows is
already happening. It is clear that re-use becomes harder as the conceptual and physical
distance between parties increases. If re-use is to happen on a wide scale, a large set
of workflows where people can draw from is key. In addition, detailed documentation
and ways to search and compare the documentation of different workflows are needed.
All of the above middleware projects offer a search mechanism to look for available
services; none however allow for the possibility to compare workflows descriptions.

In the next section we provide a systematic list of requirements for workflow re-use,
drawing from the above use cases.

2.2.3 Workflow re-use requirements

The previous section highlighted several cases of workflow re-use in various scientific
domains. They lead us to claim that workflow re-use in science only happens when the
following three categories of requirements are met:

1. A community open to workflow re-use.
2. The availability of re-usable workflows.

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 42

3. Efficient and effective workflow discovery.

A community open to workflow re-use

Whether the culture in a particular scientific community is beneficial or detrimental to
workflow re-use depends on three factors: (i) sharing attitude, (ii) re-use skill set and
(iii) re-use motivation. Different communities are marked by different dynamics.

1) Sharing attitude. Sharing attitude is driven by the need for acknowledgments,
the interaction with peers and a sense for quality assurance.

Scientists invest a lot of time in building workflows and are often hesitant to release
workflows without receiving proper acknowledgements for their work. In a commer-
cial setting this translates into a demand for formal Intellectual Property Rights agree-
ments. Science has dealt with this problem before in the context of sharing experi-
mental data. Scientists can publish in a journal when they release their data in public
databases, with the inclusion of metadata. The submitted data is then anonymised to
the extent that it is of no use for the direct competition or an embargo is imposed over
the data, to ensure the original authors enough time to exploit the data. Authors of in

silico experiments might publish their workflows in the same way. Further, there is
the recent emergence of new license forms to publish scholarly work free to the pub-
lic, such as the Science Commons initiative.16 These may also prove appropriate as a
scheme to assign scientists’ contributions to workflows.

Interaction with peers also influences sharing motivation. Open source develop-
ment of software invites contributions from other developers and is known to lead to
virtuous network effects. In a similar vein, void of other incentives, the ratio between
producers (“seeders”) and consumers (“leechers”) of workflows in a particular commu-
nity will influence the motivation of producers to contribute. In an academic setting,
producers often are consumers of others’ workflows too, which stimulates a positive
attitude towards sharing.

Given the importance of reputation in science, scientists also worry about quality

assurance when releasing a workflow to a wider audience. Mechanisms to indicate
and improve workflow reliability can reduce such fears.

2) Re-use skill set. “Re-use ability” or the IT skill set a scientist possesses deter-
mines the type of re-use she (or the team she may operate in) can technically manage.
In this respect, we reiterate the distinction between re-use, where workflows and work-
flow fragments created by one user might be used as is, and the more sophisticated

16Web site: www.sciencecommons.org

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 43

repurposing, where they are used as a starting point by others.
3) Re-use motivation. The motivation of a scientist to consider workflow re-use as

a solution as opposed to creating something from scratch is determined by her skill set

(discussed above) and the perceived quantity, quality and relevance of the workflow

pool. Whether perception matches reality depends on the mechanisms in place in a
workflow publish and share infrastructure to communicate the quantity, quality and
relevance of the workflow pool.

The quantity of available workflows signals to a re-user that there is a fair chance
a relevant workflow will be available. Workflow quality signals that the re-use effort
involved may be limited. Quality is measured in many ways, e.g. trust in the author,
transparency of the performed analysis or the popularity of a workflow with peers.
Workflow relevance is subject to the area a scientist works on. Some workflows are
run only once, e.g. to compute Higgs boson in particle physics and become irrelevant
as soon as the workflow has been run. Others remain relevant, e.g. bioinformatics
pipelines monitoring updates to public sequence databases. Workflow relevance also
relates to the technical re-usability of a workflow (discussed below).

The Availability of Re-usable Workflows

Availability of workflows is enabled by the provision of a publish and share infras-
tructure. Whether a shared workflow published on such an infrastructure is actually
re-usable depends on (i) the availability and flexibility of the distributed autonomous
services it orchestrates, (ii) the flexibility of its workflow language and the adopted
model of computation and (iii) its reliance on data models.

1) A publish and share infrastructure. The workflow re-use case studies revealed
that re-use occurs in many circumstances. Three categories of workflow re-use sur-
faced. The categories are based on the person doing the re-use: a workflow author
re-using her own workflows (personal re-use or versioning), re-use by collaborators
and re-use by third parties who the workflow author never met.

Personal re-use Building large workflows can be a lengthy process, sometimes tak-
ing years of time. This results in different versions of workflow specifications
that co-exist in one location. Manually keeping track of the relationships is a
challenging task, so versioning support is required. Versioning can be seen as a
case of “personal re-use”.

Re-use by collaborators Scientists are typically part of a research group and various

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 44

research projects, inside of which they exchange knowledge.

Re-use by third parties Third-party reuse is the kind of reuse envisaged by the e-
Science vision for intra- and inter-disciplinary scientific collaboration.

This places additional requirements on scientific workflow system infrastructure,
to:

• Identify re-usable services and workflows.
• Support the generation of re-usable services and workflows.
• Register and advertise available services and workflows in a community acces-

sible location.
• Annotate these registrations.
• Search over service and workflow information by consumers.
• Effectively re-use discovered services and workflows.
• Track a service or workflow’s re-use history.
The registration and discovery of workflows may transcend any specific workflow

environment. This idea is being pursued in the development of the myExperiment.org
infrastructure.17

In Figure 2.6, we show an extended scientific workflow life-cycle in the context of
bioinformatics. For other scientific disciplines, the word “Bioinformaticians” can be
replaced with “Workflow developers” and “Biologists” with “Workflow users.”

1. Before embarking on a new design the author should consult a catalogue or reg-

istry of previously published workflows. Search facilities identify any existing
workflows that perform exactly what they want, and is parameterised and instan-
tiated as such; exactly what they want if it were re-parameterised; or is similar
to their needs with slight modification. Once found it must be easy to transfer
this workflow into a workbench for further editing and execution.

2. Workflows or their fragments are potentially edited; services are parameterised
or bound to end points but rarely altered. Other services, workflows or workflow
fragments are sought, or new ones are created. These too must be easy to inte-
grate into the workflow design, and assembled, instantiated and executed within
the workbench.

3. We cycle through this process until the scientist is happy, and the workflow has
proven its worth.

17Web site: www.myexperiment.org

www.myexperiment.org�

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 45

Figure 2.6: A scientific workflow life-cycle which extends beyond design and exe-
cution of workflows, to encompass discovery of existing resources for inclusion, and
publication of its design.

4. It must then be a simple task to publish the workflow template to a registry,
annotate with a description and additional knowledge on the suitability of the
original workflow for this task, so that others can benefit. Conscientious users
might partition the workflow into coherent fragments and publish those; other-
wise an automated process might attempt the same. It must also be possible to
go back and annotate the original workflow with this experience.

5. The user also publishes the workflow to a portal so that it can be run by scientists
with no workflow expertise.

This life-cycle is dependent on descriptions of re-usable parts of a workflow. Which
parts are technically re-usable depends on the distributed constituent services of a
workflow, the workflow language and the reliance on data models. We discuss their
impact in the following.

2) Distributed services. Restrictions on the availability of services (as a workflow’s
building blocks) creates a bottleneck for workflow creation and availability. First, do-
main users have strong opinions about the particular services that they wish to use.
For them to be willing to create workflows, they need to have access to their favorite
tools and databases from within the workflow environment. If these are not available

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 46

as services accessible within the workflow environment, they will use other technolo-
gies. All workflow projects introduced above (bar Sedna, which relies on the BPEL
language which permits only Web services) offer access to types of services which are
other than Web services. Second, service availability is also hampered by issues of au-

thentication, authorisation, accounting and licensing. Third, the incorporation of local

services in a workflow, be it as local components or Web services deployed behind a
firewall, render a service unavailable for third parties. Repurposed workflows will need
to replace those local services, unless they are either (i) Web-enabled upon publishing,
(ii) made available for download in a public repository, or (iii) their functionality is
made part of the workflow specification.

Services on the Web typically are outside the control of a workflow developer. The
presented service interface defines the limit to which one can re-use the service: if the
service interface does not support particular functionality, even though the underlying
implementation of the service may, it is out of a developer’s reach. This is a standard
problem in object-oriented programming, where the solution has been to design objects
with re-use in mind by providing rich interfaces.

3) Workflow language and model of computation. Workflow specifications can be
hard to re-use, depending on the available support for workflow evolution and adapta-

tion in the language. Workflows change as a result of (i) continuous process improve-
ment, (ii) adaptations to changes in the workflow’s environment, and (iii) customisa-
tion of a workflow to the needs of a specific case [JH98]. The workflow evolution
literature typically considers (i) and (ii), and where (iii) is studied this is done from the
perspective of a single organisation, and does not consider unpredictable reuse by third
parties.

The saying “The nice thing about standards is that you can choose” also holds
for scientific workflow languages. Each of the projects in the aforementioned survey
uses its own language for orchestrating resources. This diversity reflects the differ-
ent demands of the application areas and computer skills of users. When it comes to
re-use and repurposing, it is desirable to have access to as wide a pool of workflows
as possible. Hence, workflow interoperability becomes an issue. Research to identify,
categorise and formally describe the different models of computation of a workflow
is ongoing and limited. Multiple patterns for control flow, data, resources and excep-
tion handling have been identified [vdAtHKB03] and are only just being formalised
[RtHvdAM06]. To our knowledge, this work has not been applied to compare and
inform interoperation between scientific workflow systems. Also, it is unclear how

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 47

fragmented patterns join up to form entire models of computation. In section 2.1.2 we
provided use cases for combinations of models of computation. Workflow developers
would need to know how such models compare and how they can be combined. We
start to address the issue in Chapter 7.

4) Data models. Workflows that are written against a data model can be more
difficult to re-use. For example, the tight coupling between a workflow and a database
requires re-users without access to this database to replicate the same conditions, which
may be expensive. Rather than the information captured within the workflow diagram,
knowledge of the data model becomes essential to understand what a workflow does.
Further, reworking a data model to fit a new purpose is often non trivial. On the
other hand, understanding the outputs generated by a workflow which does not use
a data model can be a challenge, given that little integration between the outputs will
be available. There is a trade-off between data model repurposing complexity and

workflow repurposing complexity.

Effective and efficient workflow discovery

Determining the relevant workflows for a given re-use problem is challenging. Be-
fore we can specify requirements for workflow discovery, we explore the notion of
workflow discovery in science in more detail.

2.3 Related work

Software re-use and the associated problem of finding relevant components have been
a theme in software engineering for a long time [Kru92]. We survey how the scientific
and business communities have embraced workflow re-use in particular.

Workflow technology originated in the business community to support office au-
tomation [GHS95]. We provide an overview of the adoption of workflow re-use in this
community. We then switch communities and consider the situation in science.

2.3.1 Workflow re-use in business

Parallels between scientific workflow development and business workflow develop-
ment have been drawn in [GWS+02]. There are also parallels to be drawn between how
both communities re-use workflows. Just like scientific workflows, business-oriented
workflows also contain parts that potentially are useful to others. Figure 2.7 (taken

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 48

Figure 2.7: Business processes drawn from a pool of sub-processes.

from [MHH]) makes clear that business workflows are composed of re-usable frag-
ments. Parallel to the types of scientific workflow re-use we observed in Chapter 2, in
businesses there is re-use of workflows within and across enterprises.

1) Re-use within enterprises. Given commercial pressures and issues of Intellectual
Property Rights, workflow re-use in business traditionally has been restricted to the

context of the enterprise. For example, in the literature, Blin et al. [BMW03] present a
vision and a highly parameterisable language for re-usable workflow building blocks,
to be shared within the enterprise. In a recent survey of commercial workflow systems
[MHH], the authors discuss how current day systems handle sub-workflows during
workflow design and enactment. The context for this discussion is a single enterprise.
The authors observe considerable variability in the way systems tackle process adapt-
ability, based on whether vendors thought the problems were all about the control of
employees or, at the other end of the scale, whether they sought to enable knowledge
workers to achieve their goals. This is analogous to how the drivers for workflow re-use
workflows differ between scientific communities.

Interestingly, the survey notes that “many vendors provide templates that give the
business a start point in developing specific types of applications. For example, a ven-
dor could provide proprietary business rules for popular industry processes, or even
offer software components to facilitate the development of a specific type of business
process. Some go so far as providing support for entire applications focused on a
specific vertical or horizontal application.”

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 49

2) Re-use across enterprises. In recent years, workflow systems for the commer-
cial enterprise have started to consider re-use of workflows across enterprises. The
above survey also found that some vendors provide industry frameworks that define
vocabularies and metrics for specific types of processes, for example for the insurance
industry or for companies working on supply chain systems. This feature chimes with
the vision behind the RosettaNet initiative, which offers a library of Partner Interface
Processes (PIPs) available for re-use.18 PIPs specify templates of process interactions

between companies active within a certain industry.
A different kind of workflow re-use across enterprises is enabled by the MIT Pro-

cess handbook [MCH03]. As a contribution to the organisational studies literature, it
has documented some 5000 real world business processes (which cannot be enacted
computationally). The goal is to support innovation in organisations by classifying
known business cases.19

2.3.2 Workflow re-use in science

We concluded from our survey of re-use cases in Chapter 2 that the notion of workflow
re-use is relatively new for the scientific workflow community. A prototype system for
re-use of scientific workflows based on digital libraries is described in [MPAD+05].
Few workflow repositories have been made publicly available. Examples of private
workflow repositories are the Inforsense Customer Hub20 and SciTegic’s Scientific
Applications.21 The academic Kepler project [LAB+05] is building a platform with
scientific workflow re-use in mind. It offers some 30 public workflows covering the
earth sciences, ecology, chemistry and biology.22 Work in this thesis has inspired and
contributed to the establishment of the myExperiment.org portal for scientific work-
flows.23 The site contains over 300 freely available workflows, supporting experiments
in biology, chemistry, the social sciences and music.

18Web site: portal.rosettanet.org/cms/export/sites/default/RosettaNet/
Downloads/RStandards

19Available from: ccs.mit.edu/ophi/index.htm
20Web site: hub.inforsense.com
21Web site: www.scitegic.com/products
22Web site: library.kepler-project.org/kepler
23Web site: myexperiment.org

portal.rosettanet.org/cms/export/sites/default/RosettaNet/Downloads/RStandards�
portal.rosettanet.org/cms/export/sites/default/RosettaNet/Downloads/RStandards�
ccs.mit.edu/ophi/index.htm�
hub.inforsense.com�
www.scitegic.com/products�
library.kepler-project.org/kepler�
myexperiment.org�

CHAPTER 2. WORKFLOWS, WORKFLOW RE-USE AND REPURPOSING 50

2.4 Summary

This chapter provided basic terminology and definitions for the central concepts of the
thesis: scientific workflows, workflow re-use and workflow repurposing. The notion
of workflow discovery is introduced in the next chapter.

Chapter 3

Workflow discovery

In the previous chapter we scoped our interest to the re-use of concrete scientific work-
flows (i.e. workflows that include information about the service instances they orches-
trate). This chapter provides a definition of workflow discovery and clarifies the link

of workflow discovery with re-use and repurposing and the link between discovery and

composition. Workflow discovery potentially means many things. We discuss the as-
sumed information need for it and what parts of a workflow are to be searched over.
Knowledge of the information need allows us to specify a specific class of workflow

discovery tasks formally. We formulate these in terms of workflow matching types.
Finally, the definition of matching types enables us to organise existing work on work-
flow discovery techniques in a structured way.

3.1 Definition

We introduce the following definition of workflow discovery.

Workflow discovery is the process of retrieving orchestrations of ser-
vices to satisfy user information need.

Workflow discovery is a process Workflow discovery is a process that is manual
or automated. Manual workflow discovery does not scale well for the individual
faced with an increasing number of workflows, but its observation potentially reveals
problem-solving patterns that are useful to automated techniques. Automated work-
flow discovery requires electronic input to enable the process, such as textual queries,
navigation based on hyperlinks, tag clouds or even known examples of workflows. Ef-
fective automated support of the workflow discovery process requires an understanding

51

CHAPTER 3. WORKFLOW DISCOVERY 52

of its technical requirements. We investigate these in Section 3.2.
Satisfy user information need Our target users are scientists looking for existing

workflows that support their research. To be able to satisfy them, we need to document
their information need and to evaluate how well retrieval techniques fulfill it. Inter-
preting the definition in the context of science implies we need a better understanding
of what scientist information need entails. We pursue this in Section 3.3.

In what comes next, to ground the concept of workflow discovery in relation to
existing work, we clarify the conceptual relation between workflow discovery, re-use,
repurposing and composition. We provide a detailed discussion of existing work at the
end of the chapter.

3.1.1 Relation to workflow re-use and repurposing

The user information need of scientists has implications on the type of discoveries
to be made. In the previous chapter we documented their information need based on
several case studies where scientists recycled workflows created by others. We found it
useful to draw a distinction between workflow re-use, where workflows and workflow
fragments created by one scientist might be used as is, and the more sophisticated
workflow repurposing, where they are used as a starting point by others.

It is important to realise that the difference between workflow re-use and repur-
posing leads to different requirements for the discovery step. Whereas re-use requires
finding workflows that are similar to a given user query (“Find a workflow that pro-
duces protein sequence.”), repurposing requires finding both similar workflows (“Find
a workflow able to replace my faulty workflow fragment.”) and complementary ones
(“Find a workflow that extends my current annotation pipeline with a visualisation
step.”).

3.1.2 Relation between discovery and composition

The workflow re-use lifecycle presented on page 45 (including Figure 2.6) features the
discovery of existing work as the first step in the cycle, followed by an editing step to
make it fit for purpose.

To clarify the role of workflow discovery during workflow re-use, we need to be
precise about the semantics of the word “discovery” and its relation with “composi-
tion.” We rely on the following definition of these concepts.

CHAPTER 3. WORKFLOW DISCOVERY 53

Discovery is the process of finding, ranking and selecting existing artifacts. Discovery
operates over descriptions of atomic or composite artifacts.

Composition is the process of combining artifacts into a new working assembly. It is
performed either manually, semi-automatically or automatically. Composition
typically combines discovery with integration. If either activity involves manual
intervention from a human, composition becomes non-automated.

The reader will recall that on page 35 we defined what we mean by workflow
re-use and workflow repurposing. Workflow re-use assumes only parameter changes
are made to a found workflow. Workflow repurposing involves making changes to its
structure, including deletions, extensions, replacements or insertions.

In terms of discovery and composition, workflow re-use requires only discovery
(of existing workflows). In contrast, workflow repurposing involves a discovery step
as well as, in most cases, an integration step and therefore should be seen as a form of
composition.1

Work in this thesis focuses on supporting semi-automated workflow re-use and
repurposing. Our choice to support only semi-automation draws on the observation
made in [LBW+04] that scientists in general are reluctant to relinquish control over
the construction of their experiments. We aim to support scientists’ activities, not
replace them. It is the difference between providing automated decision making and
providing automated decision support.

The automated decision support in our case is to be found in the discovery step.
This step should automatically generate clues as to what would be the best workflows
or fragments for a human to consider based on the existing workflows. Automated dis-
covery does not imply automated selection, however. For workflow re-use, we leave
the selection of the most relevant workflow amidst the discovered ones up to the work-
flow developer. Similarly, for workflow repurposing, the selection and integration part
is left up to the workflow developer. Hence a newly repurposed workflow is the result
of semi-automatic composition. Workflow discovery techniques built with repurposing
in mind in this sense are to be seen as composition-oriented discovery techniques and
sit in between automated discovery and automated composition.

1The exception being the case where workflow repurposing entails only making deletions to a found
workflow; in this case no integration between a workflow and a workflow fragment or a service occurs.

CHAPTER 3. WORKFLOW DISCOVERY 54

3.2 Workflow discovery requirements

If we are to support the specified workflow discovery tasks with automated techniques,
a number of requirements need to be fulfilled. Being able to handle the available num-
ber of workflows, having the right kind of documentation available to assess workflow
relevance and an effective ranking of potential solutions are key requirements for find-
ing relevant workflows.

3.2.1 Scalable discovery techniques

As the workflow pool grows, human perusal of the available pool becomes impossible.
Automated techniques that support users in retrieving relevant workflows will need to
combine fast performance with accurate precision and recall. Chapter 6 explores the
recall and precision of a range of discovery techniques. The thesis does not investigate
the performance of techniques in the face of an ever growing pool of workflows.

3.2.2 A comprehensive discovery model

The focus of a workflow author typically is on the scientific task performed by com-
ponent operations, the workflow as a whole, and the experience others have gained in
using them. At least in initial design, authors are less concerned with technical infor-
mation about how each operation is invoked. A structured description of this scientific
functionality provides more scope for automated assistance. Designing models that
can capture what is being done, why, and what has been tried before but failed, is a big
challenge.

In Section 3.3, we provide a first overview of the information scientific users need
to do workflow discovery. Through a series of user experiments, the next chapter
will explore in detail how bioinformaticians go about discovery and which aspects of
workflow documentation they deem important. This knowledge is very useful for the
selection and design of workflow discovery techniques, which is the topic of Chapter 5.

3.2.3 The process knowledge acquisition bottleneck

The more comprehensive a discovery model, the more effort is involved to author the
model. Scientists are reluctant to manually populate any model of an experiment. The
challenge then is to get the most benefit out of descriptions already available in a work-
flow by default and to be knowledgeable about the benefits richer descriptions bring

CHAPTER 3. WORKFLOW DISCOVERY 55

to the table. Chapters 5 and 6 explore the impact of techniques that rely on different
types of descriptions, in particular natural language and Semantic Web languages. A
related question, left unexplored in this thesis, is how to reduce the cost of acquiring
annotations by means of automated techniques.

3.2.4 Lack of workflow fragment rankings

Once workflows and annotations based on the workflow model are created, one can
query these for relevant fragments. As workflow fragment discovery is about retrieving
those fragments that are “close enough” to a user’s context, the notion of rankings is
inherently present. Fragment rankings are the result of applying a series of metrics to
workflow annotations based on a query mechanism.

Challenges lie ahead in defining metrics for workflow similarity and workflow
complementarity based on the workflow-specific conditions specified in Section 3.4
and in evaluating their suitability.

3.3 Information need for workflow discovery

Scientists search for scientific workflows with different information needs. We envis-
age they pursue the following three goals. They will inform the content of discovery
models.

• Construction of an in silico analysis.
• Linking work done in vivo and in vitro with work done in silico.
• Validation and extension of publications that report on an in silico analysis.
Scientists work to achieve their goals from within different contexts and each of

these contexts potentially contains helpful information for finding relevant workflows.
For each of the above goals, we discuss examples of contexts which may contain useful
sources of information to inform workflow discovery.

3.3.1 Construction of an in silico analysis

1) Web search engines. The construction of an in silico analysis by means of a work-
flow typically starts from an initial idea. Scientists can feed the idea to a (possibly
specialised) Web search engine and filter the results for workflows. The Google search
engine for example can be tuned to return only results from part of its overall index.

CHAPTER 3. WORKFLOW DISCOVERY 56

Figure 3.1: A customised version of the Google search engine for bioinformatics ser-
vices and workflows.

Figure 3.1 shows a version that filters on workflows and Web services for bioinformat-
ics.

2) Brainstorming tools. If the initial idea for a workflow happened to be captured
during an electronic brainstorming session, this information can also be exploited to
find related workflows. Figure 3.2 provides the hypothetical example of a “mind map”
for a workflow investigating Trypasonomiasis.2

3) Workflow editors. If a scientist knows some of the data or services that will be
2The example was created with the Mindjet MindManager Pro software.

Figure 3.2: A “mind map” for a workflow investigating Trypasonomiasis.

CHAPTER 3. WORKFLOW DISCOVERY 57

Figure 3.3: A query by example approach for workflows illustrated.

used in the analysis, she can construct an incomplete workflow based on this informa-
tion and use the incomplete workflow as input to a “query by example” approach for
finding workflows. In Figure 3.3 a small workflow created with the Taverna workbench
is shown on the left. On the right, a collection of available workflows is listed. This
collection could be filtered in terms of its relevance to the small workflow.

4) Sharing and collaboration Web sites. Sharing and collaboration sites for work-
flows should be the ideal place to find a workflow. In addition to the above mentioned
sources of information to guide the search for workflows, the social networking an-
gle these sites offer would enable scientists to find workflow authors with like-minded
research interests. myExperiment.org (Figure 3.4) is an early example of such a site.

3.3.2 Linking work done in vivo and in vitro with work done in
silico

The successful linking of scientific work done in the physical world with on-line anal-
yses can validate hypotheses from the physical laboratory and generate new ones. For
example, in biology, in vivo and in vitro work in the “wet” laboratory generates leads

CHAPTER 3. WORKFLOW DISCOVERY 58

Figure 3.4: The myExperiment site for workflow sharing and collaboration.

that sometimes can be confirmed by running an in silico analysis on-line. For an exam-
ple of this interaction see [FHW+07]. In vivo and in vitro protocols are increasingly
published on collaboration Web sites such as OpenWetWare3 (Figure 3.5) and dis-
cussed on specialised science blogs such as Nodal Point.4 The protocols can serve as
the basis for workflow searches.

3.3.3 Validation and extension of publications.

The submission of detailed experimental results alongside the submission of a schol-
arly publication facilitates the reproduction of the reported experiment. When publi-
cations report on the processing of on-line data, a workflow detailing the processing
could be attached to the submission. This should ease the validation, reproduction and
potential extension of the submitted work. The availability of open access journals
at places like PubMedCentral5 (Figure 3.6) or the Public Library of Sciences6 eases
establishing links between publications and their relevant in silico counterparts.

3Web site: www.openwetware.org
4Web site: www.nodalpoint.org
5Web site: www.pubmedcentral.org
6Web site: www.plos.org

www.openwetware.org�
www.nodalpoint.org�
www.pubmedcentral.org�
www.plos.org�

CHAPTER 3. WORKFLOW DISCOVERY 59

Figure 3.5: OpenWetWare: sharing in vivo and in vitro protocols.

Figure 3.6: PubMedCentral: a portal for open access journals in biomedicine.

CHAPTER 3. WORKFLOW DISCOVERY 60

3.4 Workflow discovery matching types

Knowledge of the user context allows us to be more precise about the workflow discov-
ery tasks we seek to support. We present the result of a survey with bioinformaticians
about how they would perform discovery. We then zoom in on a particular class of
workflow discovery tasks. The tasks focus on data flows and rely on the notion of
workflow matching conditions. We specify different types of workflow matching.

3.4.1 Workflow discovery by signature and structure

We probed a sample of bioinformaticians about the level of detail they would wish to
see while discovering workflows. During two myGrid Taverna User Day events (5-6
May and 15 November 2005), 21 out of a total of 45 participants completed a require-
ments analysis questionnaire, of which 15 were bioinformaticians and six software
developers.7

1) Discovery based on workflow signature. When asked how they might look for
workflows, four participants wrote they would search for workflows in the same way
as they do for services. The question of workflow discovery then becomes one of
discovery of a Web service based on its signature. We asked users how important var-
ious service search criteria were to them. All given criteria came out as relevant. The
criteria, in order of decreasing relevance to participants, were: Task, Input, Output,

On-line documentation, Service Provider, Underlying Resource used (e.g. a particular
database), and Algorithm used (e.g. a particular clustering algorithm). For details we
refer to the on-line survey data. In an optional Other: field, users could enter addi-
tional criteria. A few users entered Quality of Service parameters here, in particular
performance and reliability measures.

2) Discovery based on workflow structure. When asked how they might look for
workflows, five of the participants indicated they would not only rely on using a work-
flow’s signature. They expected to be using structural information during search, such
as the services contained in a workflow, the specific subtasks addressed by the work-
flow or to start from existing template workflows. This suggests a type of discovery
based more on the shape or structure of a workflow, using more behavioral type of
information.

7The survey data are available from the myExperiment Wiki at www.myexperiment.org/
benchmarks.

www.myexperiment.org/benchmarks�
www.myexperiment.org/benchmarks�

CHAPTER 3. WORKFLOW DISCOVERY 61

We then asked users to rate the following criteria which also rely on structural in-
formation. The criteria are presented here in decreasing order of relevance as assigned
by users.

• Data flow Given a set of data points, have these been connected up in an existing
base of workflows? Data flow queries came out as very important.

• Service flow Given a set of services, have these been connected up in an existing
base of workflows? Service flow queries also came out as very important.

• Workflow similarity The use of similarity to identify relevant workflows came
out as important.

• Use of specific control flow constructs Queries based on specific control flow
constructs, such as the appearance of looping and conditionals in a workflow,
were considered important. This was against our expectations and indicates that
users should be enabled to query specifically for such constructs.

3.4.2 Structural workflow matching types

In the thesis we shall focus on discovery based on workflow structure. We identify the
workflow matching types involving workflow structure in this section and re-use them
in the next section to formally specify workflow discovery tasks specifically involving
structure.

In other words, we focus on that part of the workflow discovery problem that differs
from the much better researched problem of Web service discovery - i.e. those aspects
that involve structural properties of a workflow. We specifically investigate the pos-
sibilities for matching data flow workflows based on the workflow definition adopted
in Section 2.1.3. Recall the example data workflows we discussed earlier. They are
featured again in Fig. 3.7. It features workflow W1 with OP = {op1, op2, op3} and
workflow W2 with OP = {oq1, oq2, oq3}.

We distinguish between two workflow matching types:

Similarity based matching We wish to determine whether W1 and W2 are similar
(or identical). Matching here will rely on metrics defined in terms of workflow
element identity.

CHAPTER 3. WORKFLOW DISCOVERY 62

Figure 3.7: Matching workflows W1 and W2: which workflow elements to compare
and how?

Complement based matching We wish to determine whether W1 and W2 are com-
plementary. Matching in this case will rely on metrics defined in terms of work-
flow element complementarity.

We define both types in terms of how they compare the workflow elements intro-
duced in Section 2.1.3. Between workflows W1 and W2 in Figure 3.7, a certain level
of (mis-) match exists between the types of workflow elements: (i) matches between
parameters, (ii) between operations, and (iii) between workflows.

In this section we develop definitions for the matching types at each level. This
will bring out the dependencies between the levels. We start by defining matching
types based on similarity at the parameter, operation and workflow level. We then in-
troduce matching types based on complementarity at the same levels. Note that we are
not developing algorithms to support discovery tasks. We merely define basic condi-

tions for similarity and complementarity of data flow based workflows. We claim this
should be useful to compare discovery techniques and to inspire designers of discovery
techniques.

Section 3.5 will then construct definitions of the discovery tasks in terms of the

matching types. The matching types will bring out points of commonality and differ-
ence between the discovery tasks.

CHAPTER 3. WORKFLOW DISCOVERY 63

3.4.3 Similarity-based matching

Workflows are described at the level of parameters, operations and the entire workflow.
How these elements are to be compared to establish workflow similarity, either overall
or of its parts, depends on the adopted view of similarity as a concept.

What is similarity?

Similarity can be approached in multiple ways. What are these approaches and which
of them is the best one for the workflow context?

Approaches to similarity. Cognitive scientists distinguish four major ways of mea-
suring similarity [Gol01]: featural, alignment-based, geometric and transformational.
We do not discuss all approaches here but to at least illustrate the diversity we con-
trast the featural approach to similarity (using the Tversky measure [Tve77]) with the
alignment-based approach.

(i) The featural approach. As Goldstone writes in [Gol01], “the Tversky measure
determines similarity by matching features of compared entities, and integrating these
features by the formula:

S(A,B) = θf(A ∩B)− αf(A−B)− βf(B − A)

The similarity of A to B, S(A,B) is expressed as a linear combination of the
measure of the common and distinctive features. The term (A ∩ B) represents the
features that items A and B have in common. (A − B) represents the features that A

has but B does not. (B − A) represents the features that B, but not A, possesses. The
terms θ, α, and β reflect the weights given to the common and distinctive components,
and the function f is often simply assumed to be additive.” In the case of workflows,
features might be the operations used in a workflow, the shape of a workflow diagram,
the authors of a workflow etc.

(ii) The alignment-based approach. Goldstone continues [Gol01]: “Featural mod-
els of similarity are not well suited for comparing things that are richly structured
rather than just being a collection of coordinates or features. In such cases, comparing
things involves not simply matching features, but determining which elements corre-
spond to or align with one another. Matching features are aligned to the extent that
they play similar roles within their entities.” For example, suppose workflow 1 which
has the overall output 3D structure of a protein and workflow 2 which has the overall
input 3D structure of a protein. They both share the feature 3D structure of a protein,

CHAPTER 3. WORKFLOW DISCOVERY 64

but this matching feature may not increase their similarity much because workflow 1’s
output role does not correspond to workflow 2’s input role. Users that want to find
workflows that take in 3D structures will judge workflows that produce them as final
output irrelevant.

Choosing a model of similarity. Which similarity approach and metrics are most
suited for a given workflow discovery context is not obvious. When is it enough to
calculate the number of operations shared and not shared between workflows versus
when does one need to carefully distinguish between the role of inputs and outputs? We
do not provide an answer to these questions. Rather, we develop conditions to specify

identity between different workflow features to help answer them. The conditions relate
to the two discussed cognitive models of similarity as follows:

• In terms of the featural approach to similarity, the conditions specify when par-
ticular features and groups of features are common between workflows. Our fea-
tures correspond to workflow elements and combinations thereof, as introduced
earlier in section 2.1.3. The more elements are identical between workflows, the
more similar they are. When the conditions are not satisfied, they are informative
of the distinctive features between workflows, as needed to calculate the Tversky
measure. The conditions can serve as a basis for exploring a featural approach.

• The conditions capture the structure contained within workflows. We specify
basic conditions to describe when and how workflows share elements at different
levels. They provide the building blocks for an alignment-based approach.

In summary, we claim that the identity conditions developed in the following sub-
sections will help determine the suitable models of similarity for different workflow
discovery tasks. We investigate identity-based matching at the parameter, operation
and overall workflow level.

Identity matching at the parameter level

The parameter is at the lowest level in the workflow definition of section 2.1.3. We
define the polymorphic function SamePar to pin down what is meant by identity
matching at the parameter level. It says that two parameters of operations are identical
if they have the same name, syntactic and semantic type. SamePar is defined as:

1) The case for identity between input parameters.

SamePar : IN × IN −→ Boolean

CHAPTER 3. WORKFLOW DISCOVERY 65

where

SamePar(p1, p2) =





true if p1.name = p2.name∧
p1.str type = p2.str type ∧
p1.sem type = p2.sem type

false otherwise.

2) The case for identity between output parameters.

SamePar : OUT × OUT −→ Boolean

where

SamePar(p1, p2) =





true if p1.name = p2.name∧
p1.str type = p2.str type ∧
p1.sem type = p2.sem type

false otherwise.

3) The case for identity between parameters linked to operations.

SamePar : (OP × (OUT ∪ IN)) × (OP × (OUT ∪ IN)) −→ Boolean

SamePar((op1, p1), (op2, p2)) =





true if SamePar(p1, p2) = true

false otherwise.

We acknowledge that this is an oversimplification of what constitutes identical pa-
rameters:

• Parameter names may use different terminology and structural types to indicate
the same concept. Reliance on the compatibility between the semantic types
of parameters could be enough to establish identity, in case the semantic de-
scriptions are precise enough. In [WGG+04], the example is given of a BLAST
service which is implemented differently by two service providers. The func-
tionality offered by both providers is identical, however.

• A subsumption relationship may exist between types that entails parameter com-
patibility.

The above conditions can be refined to incorporate these aspects. The literature on ser-
vice discovery has captured the various matching issues extensively, see e.g. [BEP06],
[HZB+06] or [SPAS03]. Our focus rather is on characterising matches at the opera-
tion and workflow level. The matching types describe at those levels will re-use the

CHAPTER 3. WORKFLOW DISCOVERY 66

conditions defined at the parameter level.

Identity matching at the operation level

Based on the SamePar definition for parameters, we define identity between opera-
tions through the SameOp function for operations.

The function requires that the identifier and location of two operations match. It
also requires that there is a bijection between the inputs of the first operation and the
inputs of the second operation. Similarly, it requires that a bijection exists between the
outputs of the first operation and the outputs of the second operation.

The function SameOp is defined as:
SameOp : (OP × OP)−→ Boolean

where

SameOp(OP1, OP2) =





true if OP1.name = OP2.name ∧
OP1.loc = OP2.loc ∧
∀p ∈ (OP1.in ∪OP1.out),

∃p′ ∈ (OP2.in ∪OP2.out) |
SamePar(p, p′) = true ∧
∀q ∈ (OP2.in ∪OP2.out),

∃q′ ∈ (OP1.in ∪OP1.out) |
SamePar(q, q′) = true

false otherwise.

Notice how this function relies on the SamePar function and its type restrictions.
SamePar accepts pairs of inputs or pairs of outputs, not a mix of inputs and outputs.8

One could imagine less stringent conditions with respect to operation identity such
as removing the need for a shared location, name, or inputs and outputs.

More stringent conditions could be imposed by demanding that the functional re-
lationship between the inputs and outputs is the same for two operations. We do not
assume such knowledge is available (nor is there room for it in our adopted definition
of a workflow). See the work of [HZB+06] on task descriptions for stateless seman-
tic services that can be reasoned over based on the Web Ontology Language OWL

8In the (unlikely) case that duplicate operations exist in a service, the above condition would treat
these as separate operations.

CHAPTER 3. WORKFLOW DISCOVERY 67

[HS03].

Identity matching at the workflow level

Identity matching at the parameter and operation level enables us to identify different
types of matches at the workflow level. They depend on the level of detail one takes
into account. We look at identity of sets of parameters, identity of sets of operations
and identity of sets of operations linked through data links.

1) Identity of parameter sets. Recall that W.IN and W.OUT represents the sets of
inputs and outputs of all operations that are part of a workflow, whereas W.in and W.out

denote the overall input and output parameters of the whole workflow W.
SameParsOV ERALL is used to define when workflows have the same overall input

and output parameters.
SameParsOV ERALL : (W × W)−→ Boolean with

SameParsOV ERALL(W1, W2) =





true if ∀p ∈ W1.in ∪W1.out,

∃p′ ∈ W2.in ∪W2.out |
SamePar(p, p′) = true ∧
∀q ∈ (W2.in ∪W2.out),

∃q′ ∈ (W1.in ∪W1.out) |
SamePar(q, q′) = true

false otherwise.

SameParsINTERNAL is used to define when all parameters between workflows
are shared.

SameParsINTERNAL : (W × W)−→ Boolean with

CHAPTER 3. WORKFLOW DISCOVERY 68

SameParsINTERNAL(W1,W2) =





true if ∀p ∈ W1.IN ∪W1.OUT ,

∃p′ ∈ W2.IN ∪W2.OUT |
SamePar(p, p′) = true ∧
∀q ∈ (W2.IN ∪W2.OUT),

∃q′ ∈ (W1.IN ∪W1.OUT) |
SamePar(q, q′) = true

false otherwise.

2) Identity of operation sets.

To define when two workflows have the same operations, we introduce SameOps.
SameOps : (W × W)−→ Boolean with

SameOps(W1, W2) =





true if ∀op ∈ W1.OP,

∃op′ ∈ W2.OP |
SameOp(op, op′) = true ∧
∀oq ∈ W2.OP,

∃oq′ ∈ W1.OP |
SameOp(oq, oq′) = true

false otherwise.

3) Identity of operation sets linked through data links. Workflows also define
links between the operations. To include these in the definition of identity, we rely
on SameW . Data link correspondence is imposed by requiring the respective data
link sets of the workflows are the same.

SameW : (W × W)−→ Boolean with

SameW (W1, W2) =





true if W1.name = W2.name

SameOps(W1,W2) = true ∧
W1.DL = W2.DL

false otherwise.

The inclusion of data links and name equality brings us to a definition of workflow

CHAPTER 3. WORKFLOW DISCOVERY 69

Figure 3.8: Data flow workflow examples repeated.

identity for data flow workflows. We define two workflows to be the same if they have
the same operations and the same data links combining those operations. Note that this
can be made weaker by not requiring their names are equal.

This concludes our discussion of identity-based matching types for workflows. As
we will show in section 3.5, the defined set of functions allows to characterise dis-
covery tasks that support making replacements, insertions and extensions that involve
overlapping workflow fragments.

3.4.4 Complement-based matching

For discovery tasks where complementarities between workflows are sought (for ex-
ample, to find extensions without overlaps between the workflows), a class of matching
types is needed that does not rely on finding commonalities. Although, at the lowest
level, finding complementarities also involves establishing identity, we keep similarity-
based and complement-based matching clearly separated.9

We follow the organisation of the previous section by discussing matching on the
parameter level, the operation level and finally the workflow level. We use the work-
flows in Figure 3.8 (repeated from page 34) as an example.

Complement matching at the parameter level

We start with the notion of a complement match at the level of a parameter. It specifies
that an output parameter complements an input parameter if they correspond on the
elements of the definition of a parameter. The function ComplPar is defined as:

9Note that complement here is being used in a different way to the way it is used in the OWL
community, where it is taken to refer to negation.

CHAPTER 3. WORKFLOW DISCOVERY 70

ComplPar : (OUT × IN) −→ Boolean

where

ComplPar(p1, p2) =





true if p1.name = p2.name∧
p1.str type = p2.str type∧
p1.sem type = p2.sem type

false otherwise.

Taking the example of Fig. 3.8, which parameters are to be compared depends
on the use case. If for example a user would like to combine service operation op2

with service operation oq1, then pairwise comparisons of output and input parameters
would be performed.

Akin to the case of parameter identity considered in section 3.4.3, this is a serious
simplification. We refer back to that section for possible extensions. Our focus is again
on defining matching types higher-up in the workflow element stack.

Complement matching at the operation level

ComplPar helps to define a series of match types relating to the operation level of a
workflow description. We distinguish between exact match, super match, sub match
and overlap match.
Exact match The ComplOpEXACT function specifies conditions to have an exact
match based on two complementary operations. This definition of match type is very
strict. For two operations to be compatible, the function requires that all outputs of
one operation are compatible with at least one input of a second operation, and that
all inputs of that second operation are compatible with at least one output of the first
operation. The function ComplOpEXACT is defined as:

ComplOpEXACT : (OP × OP)−→ Boolean

where

ComplOpEXACT (OP1, OP2) =





true if ∀p ∈ (OP1.out ∪OP2.in),

∃p′ ∈ (OP1.out ∪OP2.in) |
(p ∈ OP1.out ∧ ComplPar(p, p′))∨
(p ∈ OP2.in ∧ ComplPar(p′, p))

false otherwise.

CHAPTER 3. WORKFLOW DISCOVERY 71

Note that we rely on the typing restriction for inputs in the above ComplPar func-
tion to help express the desired semantics.

Going back to the example of Fig. 3.8, to combine service operation op2 and
service operation oq1, pairwise comparisons of all output parameters of op2 and input
parameters of oq1 would need to be performed. Given that parameter names are not
equal in any of the cases, there is no exact match.

The Graves disease workflow developed by Peter Li [LHJ+04] for example con-
tains mostly exact matches between operations. The reason for these perfect matches
is that its constituent services were written to match together. Most bioinformatics
workflows are assembled from distributed autonomous sources, however. It is rare that
all output parameters of an operation need to be linked to a follow-up operation for
their combination to make sense. Similarly, not all input parameters of an operation
necessarily need to receive input for the operation to work. See for example the work-
flows developed in [STW+04] and [FHW+07]. Alternative, more flexible, definitions
of what consists complementary operations are therefore needed. We define these al-
ternatives by introducing relaxations into the definition for an exact match. We re-use
the ComplPar function to define what compatibility at the parameter level means.

Bar the empty match, the previous example based on Fig. 3.8 satisfies none of these
more relaxed match conditions, because ComplPar stipulates that complementary
parameters need to have equal names.

Super match Not all inputs of the second operation need to receive input from the
first operation;

ComplOpSUPER(OP1, OP2) =





true if ∀p ∈ OP1.out,

∃p′ ∈ OP2.in |
ComplPar(p, p′) = true

false otherwise.

Sub match Not all outputs of the first operation need to match an input of the second
operation;

CHAPTER 3. WORKFLOW DISCOVERY 72

ComplOpSUB(OP1, OP2) =





true if ∀p ∈ OP2.in,

∃p′ ∈ OP1.out |
ComplPar(p′, p) = true

false otherwise.

Overlap match Not all inputs of the second operation need to receive input from the
first operation and not all outputs of the first operation need to match an input in
the second operation;

ComplOpOV ERLAP (OP1, OP2) =





true if ∃(p, p′) ∈ (OP1.out×OP2.in) |
ComplPar(p, p′) = true

false otherwise.

Empty match Between the operations no inputs and outputs match;

ComplOpEMPTY (OP1, OP2) =





true if @(p, p′) ∈ (OP1.out×OP2.in) |
ComplPar(p, p′) = true

false otherwise.

Two remarks should be made at this point:

• We mentioned earlier that the ComplPar function of complementarity between
parameters covers just one case. In the interest of brevity, we do not elaborate
on the interplay of the other cases with matching at the operation level.

• We pointed out that different workflows satisfy different operation compatibil-
ity conditions. Fulfilling ComplOpEXACT is the right condition to impose to
identify compatibility in one case, but it is too strict when considering other
cases. Conversely, more loose conditions such as ComplOpOV ERLAP risk being
too imprecise. Conditions that incorporate knowledge of cardinality constraints

of operation inputs would reduce this uncertainty and better predict when two
operations combinations are compatible [BEP06]. However, since workflows
operations that are published as part of a Web service in the WSDL language

CHAPTER 3. WORKFLOW DISCOVERY 73

typically do not indicate which cardinality constraints apply to their inputs, ad-
ditional annotation would need to be provided to use cardinality as a basis for
comparison.

Complement matching at the workflow level

The definitions of matching at a parameter and operation level allow to define what a
match entails at a workflow level. Again, multiple choices are available: exact match,
super match, sub match, overlap match and empty match.

It is important to note that only a subset of operations in OP is relevant to the
matching context at hand, i.e. only the relevant “fringe” of the workflows should be
considered. User selection or automated workflow analysis should determine the two
sets of operations relevant to the matching problem at hand.

For example, say a user wants to couple workflows 1 and 2 in Figure 3.8. Let
us assume the user is only interested in operations op2 and op3 from W1 and oq1 and
oq2 from W2. We define Wx.OPFR as the set of operations indicating fringe x for a
workflow matching problem. In the particular example above, the two relevant sets of
operations are:

W1.OPFR = {op2, op3} and
W2.OPFR = {oq1, oq2}.

Different degrees of match are possible between W1.OPFR and W2.OPFR.
Exact match The function ComplWEXACT (W1,W2) is defined as:

ComplWEXACT (W1,W2) =





true if ∀op ∈ (W1.OPFR ∪W2.OPFR),

∃op′ ∈ (W1.OPFR ∪W2.OPFR) |
(op ∈ W1.OPFR ∧ ComplOpEXACT (op, op′))∨
(op ∈ W2.OPFR ∧ ComplOpEXACT (op′, op))

false otherwise.

The definition is very strict. It requires that all operations in the fringe of the first work-
flow match with operations in the fringe of the second workflow. When they match,
they should do so on all parameters, as defined by the ComplOpEXACT function.

Note that the above example easily fails to satisfy the condition, since ComplOpEXACT

CHAPTER 3. WORKFLOW DISCOVERY 74

relies on ComplPar at the parameter level. ComplPar requires that names of param-
eters are equal, which is never the case in the example.

Similar to the previous section, different uses of the qualifiers lead to more loose
definitions of what consists a match between complementary operations. For now, we
continue to rely on the semantics of the ComplOpEXACT function.

Super match Not all operations in the fringe of the second workflow need to be com-
patible with an operation in the fringe of the first workflow;

ComplWSUPER(W1,W2) =





true if ∀op ∈ W1.OPFR

∃op′ ∈ W2.OPFR |
ComplOpEXACT (op, op′) = true

false otherwise.

The above example fails since at least one operation needs to match between the
two fringes.

Sub match Not all operations in the fringe of the first workflow need to match an
operation in the fringe of the second workflow;

ComplWSUB(W1,W2) =





true if ∃(op, op′) ∈ (W1.OPFR ×W2.OPFR) |
ComplOpEXACT (op, op′) = true

false otherwise.

In this case, again the example fails since no operations match between the
fringes.

Overlap match Not all operations in the fringe of the second workflow need to match
an operation in the fringe of the first workflow and not all operations in the fringe
of the first workflow need to match an operation in the fringe of the second
workflow;

CHAPTER 3. WORKFLOW DISCOVERY 75

ComplWOV ERLAP (W1,W2) =





true if ∃(op, op′) ∈ (W1.OPFR ×W2.OPFR) |
ComplOpEXACT (op, op′) = true

false otherwise.

Similar to the above cases, at least one operation needs to match hence there is
no overlap match between the workflows in the example.

Empty match Between the workflows no operations from the respective fringes match;

ComplWEMPTY (W1,W2) =





true if @(op, op′) ∈ (W1.OPFR ×W2.OPFR) |
ComplOpEXACT (op, op′) = true

false otherwise.

Since no operations match, there is an empty match between the workflow fringes
in the example.

Each of the match definitions can be made even more loose by substituting the
chosen ComplOpEXACT operation match function. ComplOpSUPER, ComplOpSUB,
ComplOpOV ERLAP and ComplWEMPTY all provide additional matching criteria. In
total, there are five workflow level match definitions with each having five possibilities
at the operation matching level. For readability purposes, we do not include all defi-
nitions. If multiple parameter compatibility criteria were adopted, the number would
explode further.

Practically speaking, the use of ComplOpEMPTY is only meaningful as a vehicle
for rewriting ComplWEMPTY . It is not sensible to speak of a match at the workflow
level when no parameters match at the operation level.

We conclude our analysis of workflow matching types by considering the ques-
tion of how to choose between the exact, super, sub, overlap and empty variants of

the matching types. We gave examples on page 71 of how different styles of building
workflows lead to different variants being relevant. Which variant is the most appropri-
ate for a given workflow discovery task therefore depends on the application domain.
Analysis of practical re-use cases should yield heuristics to guide the choice. Chapter
4 collects a benchmark re-use cases solved by bioinformaticians. It could serve as the

CHAPTER 3. WORKFLOW DISCOVERY 76

Figure 3.9: Appending data flows.

basis for such an analysis. This in turn could guide the design of discovery tools.

3.5 Workflow discovery tasks formally

In the previous chapter we gave a formal definition of a data flow workflow. Here, we
added (i) a characterisation of the role of workflow discovery for workflow re-use and
repurposing and (ii) an analysis of the different matching types that apply to workflow
discovery.

Together, these allow for a formal description of the discovery tasks. They are
to support finding adequate extensions, insertions and replacements for a given work-
flow. We provide examples of each in Fig. 3.9, 3.10, 3.11 and 3.12. They show two
extensions (one by prepending a workflow, the other by appending), one insertion and
one replacement. The dotted box indicates the workflow fragment that is to be com-
bined with a given, original workflow (indicated with a black box). The result of their
combination is shown, too.

In what follows we provide definitions for workflow discovery tasks that:

• support re-use through calculating workflow similarity and

• support repurposing by defining when one workflow extends another, when one
can be inserted in the other and when one can replace the other.10 Discovery
techniques can exploit these conditions to assess whether a particular relation-
ship holds between a given workflow and workflows available from a pool. For

10Obviously there is no discovery task that supports making a deletion to a workflow.

CHAPTER 3. WORKFLOW DISCOVERY 77

Figure 3.10: Prepending data flows.

Figure 3.11: Insertion in data flows.

CHAPTER 3. WORKFLOW DISCOVERY 78

Figure 3.12: Replacement in data flows.

each repurposing scenario, we define exact and overlapping matches. The no-
tion of overlap will require the combination of measures of complementarity and
similarity.

3.5.1 Calculating workflow similarity

On page 63 we summarised the major similarity paradigms in use in the cognitive
sciences. Having defined data flow workflow matching types in the previous section,
one can specify a suite of similarity metrics based on these paradigms. We provide but
one example here; metrics can be defined for each of the paradigms. Their definition
(and evaluation) is work for the future.

Recall the example of a featural metric, the Tversky measure:

S(A,B) = θf(A ∩B)− αf(A−B)− βf(B − A)

Say A equals W1.OP , the set of operations in workflow W1 and B equals W2.OP ,
the set of operations in workflow W2. We need to determine which operations are
shared and not shared between W1 and W2. Testing for the condition SameOp on the
cross product of the two sets helps to obtain the required data.

CHAPTER 3. WORKFLOW DISCOVERY 79

3.5.2 Finding workflow extensions

A workflow extends another one either by appending it or by prepending it.11 We
distinguish between extensions that are based on matching the outer ends of the work-
flows involved and those that consider overlaps between workflows, i.e. when two
workflows share a workflow fragment.

We rely on the earlier specified match conditions to define when workflows extend
each other. This approach casts the notion of an extension in terms of whether or not
particular match conditions are met. It provides an unambiguous way to document
what is meant by an extension.

Exact match Workflow W2 exact-appends workflow W1 ⇐⇒

AppendsWEXACT (W2,W1) = true

where AppendsWEXACT : (W × W)−→ Boolean with

AppendsWEXACT (W2,W1) =





true if ComplWEXACT (W1, W2) = true

false otherwise.

Workflow W2 exact-prepends workflow W1 ⇐⇒

PrependsWEXACT (W2,W1) = true

where PrependsWEXACT : (W × W)−→ Boolean with

PrependsWEXACT (W2,W1) =





true if ComplWEXACT (W2, W1) = true

false otherwise.

Both conditions are strict and assume the workflows fit together perfectly. Chang-
ing the ComplW workflow matching function with any of the alternative functions
introduced in the previous section would make them more relaxed.

11One additional, interesting, case of an extension (but not treated here) takes into account the intro-
duction of additional data links.

CHAPTER 3. WORKFLOW DISCOVERY 80

Overlap match In Figure 3.8 (on page 69), only operations op1, op3, oq1 and oq2 are
of relevance for establishing whether the two workflows exact-extend each other. In
an alternative scenario, one workflow may extend another through an “overlap.” We
define the auxiliary function OverlapsW , which relies on the ContainsW function
(defined earlier on page 35).

OverlapsW : (W × W × W)−→ Boolean

with

OverlapsW (FW1,W1,W2) =





true if ContainsW (W1, FW1) = true ∧
ContainsW (W2, FW1) = true

false otherwise.

Based on OverlapsW , we define when a workflow appends another in case the
two overlap.

Workflow W2 overlap-appends workflow W1 ⇐⇒

AppendsWOV ERLAP (W2,W1) = true

where AppendsWOV ERLAP : (W × W)−→ Boolean with

AppendsWOV ERLAP (W2,W1) =





true if ∃ (FW1, FW2) |
OverlapsW (FW1, W1, W2) = true ∧
ContainsW (W2, FW2) = true ∧
CompWEXACT (FW1, FW2) = true

false otherwise.

Observe how the notion of overlap means we need to combine measures of com-
plementarity and similarity. In a similar vein, we define when a workflow prepends
another one in case they overlap.

Workflow W2 overlap-prepends workflow W1 ⇐⇒

PrependsWOV ERLAP (W2,W1) = true

where PrependsWOV ERLAP : (W × W)−→ Boolean with

CHAPTER 3. WORKFLOW DISCOVERY 81

PrependsWOV ERLAP (W2,W1) =





true ∃ (FW1, FW2) |
OverlapsW (FW1, W1, W2) = true ∧
ContainsW (W2, FW2) = true ∧
CompWEXACT (FW2, FW1) = true

false otherwise.

3.5.3 Finding workflow insertions

In a similar fashion, we define workflow insertion for the exact case and for the overlap
case.

Exact match Workflow W3 exact-inserts workflows W1 and W2 ⇐⇒

InsertsWEXACT (W3,W1,W2) = true

where InsertsWEXACT : (W × W × W)−→ Boolean with

InsertsWEXACT (W3,W1,W2) =





true if AppendsWEXACT (W3, W1) = true ∧
PrependsWEXACT (W3, W2) = true

false otherwise.

Overlap match Workflow W3 overlap-inserts workflows W1 and W2 ⇐⇒

InsertsWOV ERLAP (W3,W1,W2) = true

where InsertsWOV ERLAP : (W × W × W)−→ Boolean with

InsertsWOV ERLAP (W3,W1,W2) =





true if AppendsWOV ERLAP (W3, W1) = true ∧
PrependsWOV ERLAP (W3, W2) = true

false otherwise.

CHAPTER 3. WORKFLOW DISCOVERY 82

3.5.4 Finding workflow replacements

Finally, we look at workflow replacements, again for the exact case and for the overlap
case.

Exact match Workflow W2 exact-replaces workflow W1 ⇐⇒

ReplacesWEXACT (W2,W1) = true

where ReplacesWEXACT : (W × W × W)−→ Boolean with

ReplacesWEXACT (W2,W1) =





true if SameW (W1, W2) = true

false otherwise.

Overlap match Workflow W2 overlap-replaces workflow W1 ⇐⇒

ReplacesWOV ERLAP (W2, W1) = true

where ReplacesWOV ERLAP : (W × W × W)−→ Boolean with

ReplacesWOV ERLAP (W2,W1) =





true if ∃ FW2 |
SameWEXACT (FW2, W1) = true ∧
ContainsW (W2, FW2)

false otherwise.

3.6 Related work

We investigate both workflow discovery solutions deployed in workflow systems and
solutions proposed in the research literature and classify them against the matching
types developed in this chapter.

3.6.1 Scope

Workflow discovery potentially encompasses a big area of research. We scope the
related work section by clarifying which aspect of the workflow lifecycle and particular

CHAPTER 3. WORKFLOW DISCOVERY 83

tasks we are looking to support. We also highlight the communities that have produced
particularly relevant work to date.

Workflow lifecycle context

We highlighted several possible user contexts to base retrieval of workflows on such
as wet lab protocols, publications or the social network of a scientist. We focus here
solely on the context offered by the workflows themselves.

The reader will remember that workflows have different phases in their lifecycle
(repeated below). In each phase of their lifecycle, workflows are associated with dif-
ferent types of information, all of which yield distinct contexts for the retrieval of
concrete workflows (i.e. the end product of phase 2). For each of the phases we give a
simple illustration:

1. During design, while the workflow is still being designed. The preliminary de-

sign of a workflow can guide a workflow developer to earlier concrete workflows
modelled on a similar design.

2. Post design, pre-enactment, as either a finished, concrete workflow where the re-
quired resources are known, or as a finished yet abstract workflow (also known
as a template) whose resources still will need to be decided dynamically during
enactment. An abstract workflow can serve as input to find a cluster of related
concrete workflows. Elements of a concrete workflow can serve to find related
concrete workflows. A single service can act as a basis to retrieve relevant work-
flows. Likewise, a selection of a subset of services, void of any control flow, can
suffice. Sometimes a workflow fragment or the complete concrete workflow will
be relevant, including its control flow.

3. During enactment, when intermediary results come about. Partial results of a

long-running workflow can direct a workflow designer to find concrete work-
flows that can work off these results.

4. Post enactment, when all results are available. Quality of service data collected
from enacted workflows can be used for discovery of concrete workflows.

We are purely interested in discovering concrete workflows based on (elements of)
concrete workflows and center the related work section around this.

CHAPTER 3. WORKFLOW DISCOVERY 84

Workflow similarity and complementarity

Communities that adopt workflow re-use are soon faced with the discovery aspect.
This chapter argued that, to support workflow re-use and repurposing through discov-
ery, there is a need for techniques that assess how similar and complementary work-
flows are. Many techniques have been developed for component discovery and com-
position which are potentially relevant.

For workflow re-use, we specified formal conditions for similarity of parameters,
operations and workflows in the case of data flows. The survey will compare discovery
techniques in terms of these conditions.

For workflow repurposing, we need to assess how complementary workflows are.
We specified formal conditions for complementarity of parameters, operations and
workflows in the case of data flows. The survey will compare composition techniques
in terms of these conditions. We stated earlier that we only wish to support repurpos-
ing as semi-automated composition, given the hands-on approach of most scientists
towards building workflows. This should not exclude automated composition tech-
niques from our survey. They are potentially useful (i) as a source of inspiration for
semi-automated techniques to establish complementarity between workflow elements
and (ii) as a generator of candidate workflow compositions which scientists can select
from.

Relevant communities

In general, software components can be described by means of their input and output,
and/or based on their behaviour, e.g. via pre- and postconditions or Finite State Au-
tomata. Based on such descriptions, components can be discovered, composed, config-

ured, verified, simulated, invoked and monitored. Of these, discovery and composition
are the most relevant for our purposes. Depending on the formalism and the level of
detail used to describe workflows, different techniques apply. A full survey of what
has been done historically is beyond our scope. Several communities have produced
techniques that support the retrieval of software components, especially the software

engineering, knowledge engineering, formal methods and information retrieval com-

munities.
Workflows orchestrate both software components that live on the Web as Web ser-

vices as well as other types of components. At an abstract level, workflows can be
regarded as composite components, which means some of the machinery developed

CHAPTER 3. WORKFLOW DISCOVERY 85

for software component discovery and composition is applicable. The techniques con-
sidered in this chapter are selected based on their particular relevance to workflow dis-
covery and workflow composition, as opposed to discovery and composition of atomic

components. In other words, we exclude work that only considers atomic components
as the basis for either a discovery or composition process. We point the interested
reader to a survey of discovery techniques for atomic components, published as Web
services, by [TIR+07]. Surveys that consider composition of two atomic components,
published as Web services, include [DS05] and [RS04]. These surveys do not consider
the situation where composite components or groups of atomic components are to be
matched with other composite components. Our contribution is to present and com-
pare techniques addressing the latter situation. They are from the scientific workflow
community, the Web services community, the multi-agent systems community and the
workflow community.

3.6.2 Discovery support in scientific workflow systems

We start the survey by determining the level and type of workflow discovery support
available in both scientific workflow systems and (covered much more briefly) in busi-
ness workflow systems. The survey is to reveal a serious lack of support, which will
lead us to present techniques developed in other communities.

How does the scientific workflow systems community approach the workflow dis-
covery problem? For commercial systems, information on workflow discovery ap-
proaches is sparse. Little information is available from commercial vendors (e.g. the
above mentioned Inforsense and SciTegic). Similarly, for business-oriented workflow
systems, the above-mentioned survey of [MHH] does not reveal any details on this
point. Our impression is that most vendors treat sub-workflows as just another atomic
component in the workflow. For this reason we speculate that discovery is mostly per-
formed based on information captured in a sub-workflow’s signature and is not based
on its structure.

Given the lack of available information, henceforth only work from the academic
community will receive attention.

CHAPTER 3. WORKFLOW DISCOVERY 86

Discovery support in terms of workflow lifecycle phase

Based on the various workflow phases introduced earlier, we provide a high level
overview of the discovery support offered by a large section of systems. Both sup-
port in scientific workflow systems and standalone provenance management systems
is assessed. The presented sample is drawn from the surveys of [YB05], [GSLG05]
and [Zha07]. An discussion of the systems presented in Table 3.2 is available from the
Provenance Challenge site.12

Tables 3.1 and 3.2 reveal that no one system offers support for discovery for all
phases. It also shows that the majority of systems offer support for retrieval of at
least one type of workflows but sometimes there is none. Depending on whether the
onus is on supporting design, enactment (including scheduling of resources) or results
management, different functionality has been made available. A detailed discussion of
the support available in each category is outside our scope. We will zoom in on the
specific functionality systems offer in terms of phase 2.

Discovery support for concrete workflows

Taking the subset of systems that provide some level of support for discovery of con-
crete workflows, we observe from Table 3.3 that most systems offer no facility to
search workflows based on their structure. Workflows are commonly treated as just
another service type which can be retrieved by its signature description. Exceptions
are the VisTrails system [SVK+07] and Chimera [ZWF06]. We discuss both systems
in more detail in the next section.

3.6.3 Techniques in support of concrete workflow discovery

Besides the techniques available in operational e-science systems, a range of relevant
research prototypes have been developed in other communities. We distinguish be-
tween techniques that focus specifically on workflow discovery and work that tackles
(semi-)automated workflow composition. The next section will then classify a subset
of techniques (those capable of assessing workflow similarity and complementarity) in
terms of the workflow matching conditions we defined earlier.

CHAPTER 3. WORKFLOW DISCOVERY 87

Workflow system Workflow
lifecycle
phase 1

Phase 2 Phase 3 Phase 4

VisTrails [SVK+07] yes yes no yes
Taverna [OGA+05] no yes no yes
Kepler [LAB+05] no yes no yes
Chimera [ZWF06] no yes no yes

JOpera [PA04] no yes no yes
Triana [MWG04] no yes no no

Geodise [TCS+04] no yes no no
Sedna [WEB+07] no yes no no

WINGS [GRD+07] no yes no no
Pegasus [DBG+04] no no yes no

DAGMan [TWML01] no no yes no
Askalon [WPF05] no no yes no

Gridbus Broker [SVW06] no no yes no
GrADS [Gro07b] no no no no

GridFlow [Gro07c] no no no no
ICENI [MYA+04] no no no no
Karajan [Las05] no no no no

UNICORE [For04] no no no no

Table 3.1: Support in scientific workflow systems for workflow discovery, based on
the phase in the workflow lifecycle.

Standalone
provenance

systems

Workflow
lifecycle
phase 1

Phase 2 Phase 3 Phase 4

Pasoa no no no yes
REDUX no no no yes
Karma no no no yes
PASS no no no yes

CESNet no no no yes
Zoom no no no yes
ES3 no no no yes

Table 3.2: Support in scientific provenance systems for workflow discovery, based on
the phase in the workflow lifecycle.

CHAPTER 3. WORKFLOW DISCOVERY 88

Workflow system Discovery
based on
signature

Discovery
based on
structure

VisTrails [SVK+07] yes yes
Chimera [ZWF06] yes yes
Taverna [OGA+05] yes no
Kepler [LAB+05] yes no

JOpera [PA04] yes no
Triana [MWG04] yes no

Geodise [TCS+04] yes no
Sedna [WEB+07] yes no

WINGS [GRD+07] yes no

Table 3.3: Support in scientific workflow systems for workflow discovery in phase 2,
based on workflow signature and structure.

Concrete workflow discovery techniques

Table 3.4 provides an overview of approaches in support of workflow discovery. It
makes clear that multiple workflow languages are being investigated and that the scope
of each approach is limited to only one language. Different data structures are in play to
represent workflows, with graphs being a popular option, and different techniques work
over these structures. The table also reveals that none of the listed techniques support
the discovery of complementary workflows based on “bridging” workflow fringes (cfr.
page 69) - such capability is more commonplace in workflow composition techniques
(see the next section).

The Chimera system, [ZWF06] and introduced above, translates workflows avail-
able as Virtual Data Language specifications into untyped graphs. The system allows
retrieval of workflows by example, in that a query graph can be fed into the system in
order to retrieve pipelines extending the one represented by the query graph.

The earlier mentioned VisTrails e-science system [SVK+07] enables querying of
pipelines of specialised visualization modules from the VTK dataflow-based visualiza-
tion system. It translates the pipelines into typed graphs and relies on a graph matcher
to offer exact (pattern-based) and approximate search. Akin to Chimera, VisTrails re-
lies on a graph matcher for pattern-based search. This permits to retrieve pipelines by
example. In addition, it allows for approximate search. This is implemented by first

12Web site: http://twiki.pasoa.ecs.soton.ac.uk/bin/view/Challenge/
ParticipatingTeams

http://twiki.pasoa.ecs.soton.ac.uk/bin/view/Challenge/ParticipatingTeams�
http://twiki.pasoa.ecs.soton.ac.uk/bin/view/Challenge/ParticipatingTeams�

CHAPTER 3. WORKFLOW DISCOVERY 89

Reference Workflow
language

Data
structure

Technique Similarity Complemen-
tarity

Chimera
[ZWF06]

VDL Untyped
graph

Exact
graph

matching

no no

VisTrails
[SVK+07]

VTK Typed
graph

(In-)exact
graph

matching

yes no

[BEKM06] BPEL Typed
graph

Exact
graph

matching

no no

[CGB06] BPEL Typed
graph

Inexact
graph

matching

yes no

[BK02] MIT
Process
Handbook
(PQL)

Typed
graph

PQL no no

[KBL+07] MIT
Process
Handbook
(OWL)

Typed
graph
(RDF)

iSPARQL yes no

myGrid
[WSG+03]

SCUFL Description
Logic

(OWL)
concepts

Description
Logic

(OWL)
classifica-

tion

no no

[MW06] RosettaNet
PIP

Annotated
FSM

N-gram
indexing

yes no

Table 3.4: Techniques for automated workflow discovery.

CHAPTER 3. WORKFLOW DISCOVERY 90

calculating how one pipeline can be transformed into another and then recording the
relative ease with which this can be done between all possible pipeline pairs.

Beeri and colleagues [BEKM06] developed and implemented a graph-based query
language for BPEL (Business Process Execution Language) workflows. Following
the same logic of the previous paragraph, the approach could be used for retrieval of
workflow extensions. While also relying on the representation of a BPEL workflow
as a graph, Corrales et al. [CGB06] (prototype available on-line13) instead use error-
correcting graph subisomorphism detection. The technique enables them to calculate
an edit distance between graphs and hence to define a structural similarity metric for
workflows.

Contrasting the work of Bernstein and Klein [BK02] with that of Kiefer et al.
[KBL+07] yields a similar “exact versus inexact” querying capability. Bernstein de-
signed a query language (the Process Query Language) to enable exact structural
queries over an Entity Relationship (ER) diagram. The ER diagram in question for-
malises the structure of processes available in the MIT Process Handbook. Kiefer on
the other hand also worked over Process Handbook entries, but translated these into
a graph specification (in RDF) and relied on text similarity in the contents of graph
nodes to retrieve similar graphs.

A Description Logic based approach is explored by Wroe and colleagues [WSG+03].
They abstract Taverna workflows, written in the Scufl language, to be a bag of ser-
vices and discard all structural relationships between these services. The workflows
are represented by concepts in DAML+OIL, a precursor of OWL, the Web Ontology
Language [HPSvH03]. DAML+OIL is underpinned by a very expressive Description
Logic to allow automated logical reasoning. Workflows are represented by concepts
that have part-of relationships with other concepts that in turn describe the constituent
services of a workflow. Subsumption reasoning is used to detect whether the services
in one bag subsume the set of services in another.

Finally, Mahleko and Wombacher [MW06] work over workflows in the form of
RosettaNet Partner Interface Processes. Their approach tackles the hard computational
complexity the above approaches are typified by, and proposes the use of Finite State
Machines (FSMs) to obtain fast performance during matching. The formalisation of
a workflow into an FSM can be done with decreasing accuracy. Accuracy decreases
gradually as fewer of all possible paths in the control flow of a workflow are encoded
by the FSM. A less precise formalisation in turn enables speedier comparisons. By

13Web site: http://ariadna.unicauca.edu.co/BPELService/

http://ariadna.unicauca.edu.co/BPELService/�

CHAPTER 3. WORKFLOW DISCOVERY 91

Reference Workflow
language

Data
structure

Technique Similarity Complemen-
tarity

[KGR06] OWL Description
Logic

(OWL)
concepts

Description
Logic (OWL)

reasoning

no no

[KWJ+04] Prolog Prolog
clauses

Inductive
logic

programming
and active
learning

yes no

VisTrails
[SVK+07]

VTK Typed
graph

Inexact graph
matching

yes yes

[BGL+04] BPEL Mealy
FSM

Description
Logic (ALC)

model
checking

no yes

[MWG04] OWL Description
Logic

(OWL)
concepts

Planning no no

[LR05] LCC Prolog
clauses

Incidence
calculus

yes yes

[MBE03] WSFL
and
XLANG

CSSL
specifica-

tions

Composability
rules

no yes

Table 3.5: Techniques for automated workflow composition.

comparing the traces of workflows formalised as FSMs, they are able to detect work-
flow similarity. Practically, the FSMs are serialized as an N-gram (a sub-sequence of N
items from a given sequence) where an increase in N enables a more precise workflow
representation. Comparisons are performed through N-gram indexing.

Concrete workflow composition techniques

In addition to techniques for concrete workflow discovery, the literature also contains
work to (semi-)automatically construct concrete workflows. Three types of approaches
can be found: those that assume the existence of a pre-defined template or framework,
those that compose unrelated sets of atomic components without relying on a given
structure and those that combine both approaches.

CHAPTER 3. WORKFLOW DISCOVERY 92

With a template. The WINGS system (Workflow INstance Generation and Se-
lection) is a OWL-based framework for creating workflow instances developed at the
University of Southern California [KGR06]. Given a workflow template and input
file descriptions in the Web Ontology Language OWL [HPSvH03], the system creates
valid instantiations of the workflow template. It has been applied to generate large
executable workflows in an earthquake science application.

Another example of the template approach can be found in King et al. [KWJ+04].
Their “robot scientist” auto-generates new sets of actions or experiments (workflows)
to undertake based on feedback of running earlier experiments. The robot investi-
gates the function of different genes in baker’s yeast. Knowledge on biochemistry,
encoded as Prolog clauses, and feedback from watching the yeast grow are combined
to generate a set of hypotheses concerning the function of the gene in question. It then
generates a new experiment that will eliminate as many of the hypotheses as possible.
Conceptually this approach differs from the WINGS approach in that the outcome of
running one “workflow” links into the generation and execution of a new one.

Without a template. The VisTrails system [SVK+07], which we introduced as
a discovery technique above, also allows the semi-automatic creation of dataflows of
visualization modules by analogy. The idea is that the steps that were needed to create
one particular pipeline potentially help generate others in the future and thus should
be stored as a macro or analogy. The macro is applied whenever other pipelines are
found that match its starting context. The relevance of the starting context of a candi-
date pipeline to a macro is quantified as a weighted average between how compatible
its modules are and how similar its module neighbourhood is. Module compatibility
is determined by comparing how many ports are shared between modules and neigh-
bourhood similarity by comparing topologies of connecting modules.

Berardi and colleagues [BGL+04] make the (rather strong) assumption that ser-
vices have their behaviour exposed as Mealy Finite State Machines. Under this as-
sumption, synthesis of different services becomes possible by checking composability
of FSMs. Technically this is achieved by reducing the problem to checking satisfiabil-
ity of formulae in the ALC Description Logic.

Lambert and Robertson [LR05] make the observation that logic-based approaches
will not be able to capture all the pertinent system features in a complex world. Rather,
the process of agent composition should take the practical performance of earlier com-
positions in the real world into account. As a contribution to the multi-agent systems

CHAPTER 3. WORKFLOW DISCOVERY 93

Figure 3.13: Semantic and syntactic service composability.

literature, they develop a statistical approach to agent (i.e. service) selection and com-
position. By relying on the LCC language (Lightweight Coordination Calculus), they
gain a protocol for capturing the failure and success of interactions between agents.
The protocol’s ability to log performance enables them to apply the incidence calcu-
lus to gather performance statistics. The thus gathered statistics help inform the agent
composition process.

Combining both. Medjahed et al. [MBE03] propose a framework and implement
a prototype for the automatic composition of groups of Web services into (WSFL and
XLANG) workflows. They rely on a template-based technique and on techniques that
work independent of a template. To generate new workflows, the authors propose the
use of two sets of composability rules. These are to compare the syntactic and semantic
properties of Web services (Fig. 3.13):

Syntactic rules They include: (i) mode composability, which compares operation
modes (e.g. “one-way,” “solicit-response”), and (ii) binding composability, which
compares the binding protocols of interacting services [MBE03].

Semantic rules They include: (i) message composability, which compares the number
of message parameters, their data types, business roles, and units; (ii) operation
semantics composability, which compares the semantics of service operations;
(iii) qualitative composability, which compares qualitative properties of Web ser-
vices; and (iv) composition soundness, which checks whether combining Web

CHAPTER 3. WORKFLOW DISCOVERY 94

services in a specific way is worthwhile [MBE03].

Composition soundness checks composability at the workflow composition level,
unlike the other rules that deal with composability at the Web service and operation
levels. Composition soundness is done by checking its compliance against a so-called
composition template. Composition templates are graphs built using precedence rela-
tionships between services, learned by the system or added by experts.

In terms of the matching conditions, the framework of Medjahed is richer than our
matching conditions in that it makes more layers of the matching process explicit. It is
poorer than ours in that it only considers exact matches and not partial matches (what
we described as super matches, overlap matches and empty matches).

3.6.4 Classifying techniques by workflow matching conditions

Not all of the discussed workflow discovery and composition techniques make it pos-
sible to assess workflow similarity and complementarity. We classify the ones that do
against the workflow matching conditions (see Tables 3.6 and 3.7).

Of those techniques that do similarity assessment, Table 3.6 shows that only Vis-
Trails [SVK+07] allows to meet all conditions. It does not implement the more fine-
grained definitions of partial (i.e. super and overlap) matches, though. Corrales’ ap-
proach [CGB06] is able to detect similarities at all workflow levels. For the remaining
two techniques, some restrictions are in place. The textual similarity metrics imple-
mented by Kiefer [KBL+07] allow only to rank workflows at a coarse level and do not
distinguish between parameters or operations. Partner Interchange Processes, which
are the subject of the work of Mahleko [MW06], do not contain inputs or outputs
(only activities) and as a result [MW06] provide no facility to make comparisons at the
parameter level.

Of the techniques that do complementarity assessment, Table 3.7 shows that the
robot scientist work [KWJ+04] does not support the conditions. Similarly, Lambert’s
statistical technique [LR05] does not rely on these conditions. Instead, both approaches
use another type of knowledge to generate workflows: in the case of [KWJ+04] this
is biochemical knowledge; in the case of [LR05] it is historic performance data. Fi-
nally, both the Mealy FSM approach of Berardi [BGL+04] and the composition rule
based approach of Medjahed [MBE03] enable to check for matching conditions for
complementarity between parameters and operations. Although neither paper explic-
itly mentions supporting workflow fragment complementarity, their chosen technical

CHAPTER 3. WORKFLOW DISCOVERY 95

[SVK+07] [CGB06] [KBL+07] [MW06]
Complement based yes no no no

ComplPar yes no no no
ComplOp yes no no no
ComplW yes no no no

Identity based yes yes yes yes
SamePar yes yes no no
SameOp yes yes no yes
SameW yes yes yes yes

Table 3.6: Classification of workflow discovery tools against workflow matching con-
ditions.

[KWJ+04] [SVK+07] [BGL+04] [LR05] [MBE03]
Complement based no yes yes no yes

ComplPar no yes yes no yes
ComplOp no yes yes no yes
ComplW no yes yes no yes

Identity based no yes no no no
SamePar no yes no no no
SameOp no yes no no no
SameW no yes no no no

Table 3.7: Classification of workflow composition tools against workflow matching
conditions.

approach makes it plausible that they do.

3.7 Summary and discussion

We defined workflow discovery, examined the role of discovery in scientific workflow
re-use, specified technical requirements and considered multiple application scenarios.
We scoped the problem to discovery based on the structural properties of a workflow.

We distinguished between discovery that is based on similarity, and discovery that
is based on complementarity. Both types support different workflow re-use and repur-
posing tasks. We used the distinction to define workflow discovery tasks formally. In
addition, the distinction was useful to classify existing approaches to workflow discov-
ery.

CHAPTER 3. WORKFLOW DISCOVERY 96

We also developed a range of fine-grained matching conditions, detailing the de-
gree of match between workflows at different levels. The conditions provide a rich
framework against which to contrast discovery techniques.

• At a high level, they have proven useful to compare existing discovery techniques
(particularly so when these involve data flows). None of the existing work is
able to match all of the fine-grained conditions. The conditions will be re-used
at a high level to compare techniques developed for the Taverna workbench in
Chapter 5. Similarly, none of the techniques there match all conditions.

• At a detailed level, in future the matching conditions may provide a useful spec-
ification to design similarity and complementarity metrics against.

The next chapter will refine the requirements for workflow discovery by investigat-
ing how scientists, and in articular bioinformaticians, approach re-use and discovery.

Chapter 4

Building benchmarks for workflow
re-use

This chapter presents the results of a series of user experiments. The goal of the ex-
periments is to understand how bioinformaticians discover concrete workflows. The
experiments are confined to the case where discovery supports the re-use task of adapt-
ing an existing workflow a user works on.

All five experiments use a corpus of real-world bioinformatics workflows, as gen-
erated by domain experts with the Taverna workbench.

4.1 Overview of experiments

The experiments differ widely in their setup, reflecting the different approaches taken
for capturing how re-use occurs, the different conditions under which re-use occurs
and practical constraints involved in running user experiments.

We use the term “experiment” because in each there is the underlying hypothe-
sis that, under a fixed set of conditions, scientists can successfully perform workflow
re-use and discovery. At the same time, the experiments are attempts at building bench-
marks, where the successful outcome of the experiment yields a benchmark as a side
effect.

Table 4.1 provides an overview of the experiments according to their wide differ-
ences in experimental setup, number of participants, materials, procedure and results.
We discuss the details below.

97

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 98

1 2 3 4 5
Setup
Design white box black box black box black box grey box
Re-use
subtasks

discovery discovery,
editing

discovery discovery discovery,
editing

Discovery task similarity sub,
super

sub, super,
alternative,
equivalent

sub, super,
alternative,
equivalent

sub, super

Re-use
directions

B2B, B2C B2C A2A B2A B2A, A2B,
B2C

Participants
Number 9 15 2 2
Expertise + ++ +++ ++++ +++
Materials
Use of survey yes no no no yes
Workflows 6 20 67+78 33 24
Documentation + + ++ ++ ++++
Procedure embedded embedded independent independent independent
Results
Avg. duration 30 min. 20 min. 105 min. 30 min. 90 min.
Stat. support - - ++ + ++
Assessments N/A N/A 145 456 1848

Table 4.1: Overview of user experiments.

4.1.1 Experimental setup

The experimental designs we set up to capture re-use behaviour either regard a user’s
behaviour as a black box, capturing only the outcome of that behaviour, or as a white
box, with a view to also capture the behaviour exhibited to reach that outcome. In a
first experiment, described in Section 4.2, we pursue a white box approach to model
how users re-use workflows. The negative results encountered lead us to consider a
less ambitious black box approach in the next three experiments. The positive results
from those in turn drive us to investigate a “grey box” approach, capturing more than
the black box but less than the first white box based experiment.

Following the discussion on the difference between re-use and repurposing in the
previous chapter, we consider both the discovery step and the editing (integration)
step. Table 4.2 shows the type of information captured in each case, split over re-use
subtask. All experiments aim at least to collect information covered by the black box
approach, as shown in Table 4.1. The task of discovering relevant workflows from a

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 99

During discovery During editing
Black box User-selected workflows User-made edit actions
Grey box User-selected workflows +

type and amount of
information used

User-made edit actions + type
and amount of information

used
White box User-selected workflows +

type and amount of
information used + search

strategies

(not studied)

Table 4.2: Type of information measured during the black, grey and white box based
experiments.

repository is the subject of benchmarks 1-5 while the subsequent task of integrating
a found workflow with the current workflow a user is editing is part of benchmarks 2
and 5.

The discovery step is investigated along different dimensions, presenting users with
different tasks. In the first experiment, an assessment of similarity between workflows
is measured, whilst the subsequent experiments focus more on identifying specific task
relationships between workflows.

We take into account that workflows are re-usable between several parties in several
directions. Figure 4.1 summarizes the five possible ways the author of a set of work-
flows “A” can re-use her own as well as other people’s workflows. We discuss these
below. Table 4.1 highlights which experiments investigate which re-use direction. It is
important to make these distinctions because they are expected to influence the diffi-
culty of a re-use task and the strategies people use to solve it, e.g. re-use of workflows
one is familiar with should be easier. A distinction is made between personal re-use,
involving only workflows authored by the re-user, and cross-author re-use, involving
other workflows.

1. Personal re-use: from A to A (A2A) Re-use of workflows from a personal
collection, which are either versions of the workflow one is currently working
on, or previously built workflows with a different topic altogether (Figure 4.2).

2. Cross author re-use: from B to A (B2A) Re-use of workflows from someone
else’s collection to alter one’s own current workflow (Figure 4.3).

3. Cross author re-use: from A to B (A2B) Re-use of workflows from one’s own
collection to alter a workflow from someone else’s collection (Figure 4.4). The

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 100

A B

C
5

41

2

3

Figure 4.1: Types of workflow re-use from the perspective of the author of a set of
workflows A.

A
1

Figure 4.2: Single author re-use: from A to A (A2A).

difference between A2B and B2A is in the starting point – do we take our own
workflow as a starting point and extend it with one of our own or do we extend
our own with someone else’s. Although the end result may be the same, the edit
operations undertaken to integrate the two will be different.

4. Cross author re-use: from B to B (B2B) Re-use of workflows from someone
else’s collection to alter a workflow from that same collection (Figure 4.5).

5. Cross author re-use: from B to C (B2C) Re-use of workflows from someone
else’s collection to alter a workflow from another external collection (Figure
4.6).

4.1.2 Participants

Between two and 24 bioinformaticians participate in the conducted experiments. The
expertise of participants ranges from MSc in Bioinformatics students novel to the idea

A B2

Figure 4.3: Cross author re-use: from B to A (B2A).

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 101

A B3

Figure 4.4: Cross author re-use: from A to B (A2B).

A B
4

Figure 4.5: Cross author re-use: from B to B (B2B).

of workflows to experienced postdoctoral researchers having authored over 100 bioin-
formatics workflows. The expertise indication of participants assigned in Table 4.1
also appreciates that participants performing a re-use task based on workflows they
authored are considered more expert than the other participants.

4.1.3 Materials

In two instances, surveys are used to gather feedback from participants before and
after the experiments. In the other instances, informal interviews are used to probe for
people’s experiences.

To match the type of re-use task under investigation, different sets of workflows are
used. The workflows are available publicly in the myExperiment.org repository.

The different experiments reveal different amounts of workflow detail to users. In
its most basic form, a workflow as shown to a participant consists of an orchestration
of services rendered as a diagram, showing only those inputs and outputs actively
involved in the orchestration shown (+). A slightly more detailed version shows also
the name of the workflow (++). In the case of the last experiment, even more detail
is provided with the inclusion of textual descriptions of the overall workflow task and

A B

C
5

Figure 4.6: Cross author re-use: from B to C (B2C).

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 102

of the services as well as semantic annotation of services, based on concepts selected
from the myGrid ontology (++++).

4.1.4 Procedure

Some experiments piggyback on already organized training days for the Taverna work-
flow editor. Others are set up independently through separate sessions.

4.1.5 Results

Based on the statistical analysis of their results, some experiments are more robust than
others, resulting in assessments (not-) usable as a benchmark.

4.2 Experiment 1: cross author, white box re-use

4.2.1 Experimental setup

In this section, we pursue a white box approach to model how users re-use workflows
across authors. The re-use directions captured are B2B and B2C. Specifically, we
target the discovery of similar workflows and do not consider the editing of workflows
found. The goal of the experiment is threefold:

1. Establish how bioinformaticians select relevant workflows based on providing
similarity assessments. We use similarity as a broad metric to uncover relevant
workflows for workflow re-use tasks. The intuition behind this approach is that
workflows that are known to perform a subtask, supertask, alternative task or
equivalent task of a given workflow could be considered similar to that workflow.
Do participants think this task is hard? Do they behave consistently?

2. Gather feedback on the type and amount of workflow information users rely on
for making (dis-)similarity assessments.

3. Uncover the patterns of searching and matching bioinformaticians use to estab-
lish workflow similarity. How do they rank workflows? Do people use some
criteria all the time, regardless of the workflow in question? What is the rela-
tion between the matching criteria they use: for example, do they reinforce each
other or cancel each other out?

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 103

We report on the data gathered during this user experiment and its statistical in-
terpretation. Given the weak results of our statistical analysis afterwards, we are only
able to provide a partial answer to the above questions.

4.2.2 Participants

During a myGrid User Day event (February 2006), 13 users completed an exercise
to rate the similarity between an exemplar workflow (shown in Fig. 4.8) and other
workflows. Nine users were bioinformaticians and four were software developers.
None were an original author of the workflows in the corpus.

4.2.3 Materials

The user experiment included the use of an on-line survey, a corpus of similar on-line
workflows and the rendition of those workflows. All are made available on-line.

An on-line survey

An on-line survey was created through the survey service at www.keysurvey.com.
It contained three main sections. The first section gathered basic information on the
subject and established whether they understood the biology behind the exemplar
workflow. The second part asked users to rate the workflows and their confidence
in doing so. The final part asked which additional information would be helpful in
making similarity assessments and whether they found the exercise difficult.

A corpus of public workflows

A corpus of six workflows was used as the basis for the exercise. Five of the workflows
in the corpus are created by Peter Li, a bioinformatician researching Graves disease
[LHJ+04]. Because the workflows are versions of each other, they are highly related
and form a good basis for a workflow similarity experiment. The biological goal of
this set of workflows is to discover genes involved in the disease based on microarray
data and to prepare the genotyping of single nucleotide polymorphisms (SNPs) which
are nucleotide variations that occur in those genes. The sixth workflow (see Fig. 4.13)
is created by a different author, Hannah Tipney, to investigate the genetic basis of
Williams Beuren syndrome [STW+04]. The workflows can be accessed from within
Taverna, as shown in Fig. 4.7. The exemplar workflow is shown in Fig. 4.8. The

www.keysurvey.com�

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 104

Figure 4.7: The AffyidToBlastxPDB.xml workflow loaded in the myGrid workbench.
The Available services pane provides access to both services and workflows.

comparison workflows are shown in Figures 4.9 - 4.13. They differ on dimensions
such as size, node orderings and differences in the scope of the biological task. The
chosen combinations of workflows ensure that authors are tested on the B2B re-use
direction for those combinations where only Peter Li’s workflows are considered. The
B2C direction is tested when the exemplar is used in conjunction with the Williams
Beuren syndrome workflow.

4.2.4 Procedure

The survey was presented as an exercise that was an integral part of the training at
the User Day. The stated goal of the exercise was to allow a user to study and try to
understand some more complex workflow diagrams, while allowing the myGrid team
to understand how similarity between workflows is perceived.

Users were first shown an overview of all available workflows, to give them an
impression of the complexity involved in the manual discovery task. They were then
explained the concept of a gold standard or benchmark. Five workflows from the cor-
pus were presented for comparison against the exemplar workflow. For each workflow,
users were presented with five questions to judge how similar it was to the exemplar
workflow.

Participants were instructed to leave the question on similarity of biological func-
tionality open when they did not understand the biology, and as a check we asked that

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 105

Figure 4.8: The exemplar workflow AffyidToBlastxPDB.xml in more detail. From a
workflow input (accompanied by a red triangle), the workflow accesses the AffyMap-
per and BlastX Web services (the middle boxes) and yields an output (indicated by a
green upside down triangle).

Figure 4.9: Workflow 1, AffyidToGeneAnnotation2.xml.

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 106

Figure 4.10: Workflow 2, AffyidToGeneAnnotation4.xml.

Figure 4.11: Workflow 3, BlastNagainstDDBJatDDBJ.xml.

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 107

Figure 4.12: Workflow 4, AffyidToFastaSequence.xml.

Figure 4.13: Workflow 5, williams-partA-paper.xml.

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 108

Figure 4.14: The form for entering workflow similarity values.

they describe the biology behind the exemplar and the comparison workflows.
To indicate the similarity between a pair of workflows, users selected a bullet

from nine options (see Fig. 4.14). Each bullet corresponds to a value: 1 corre-
sponds to Identical, 5 to Similar, and 9 to Not similar at all. Users
also provided a measure of confidence in their similarity assessment, ranging over:
High--Medium--Low, with High having value 1 and Low being equal to 5.

Finally, they had to rate how useful they found six factors for estimating sim-
ilarity, with usefulness defined as: Very useful-- Useful-- Only a bit

useful-- Not useful at all, with Very useful equal to 1 and Not
useful equal to 4. The factors users were asked to rate were the following:

1. It makes biological sense to have this workflow as a part of the example workflow

2. It makes biological sense to have this workflow superimposing over the example
workflow1

3. Workflow shape: number of shared inputs and outputs

4. Workflow shape: service type correspondence

5. Workflow shape: shared service compositions

6. Workflow shape: shared paths between (intermediary) input and output

4.2.5 Results

The entire exercise took participants 30 minutes on average. By analysing the gen-
erated data, we can partially answer the questions put forward in the beginning of
the section. We used the SPSS (www.spss.com) statistical package for analysis.
The full results are available on-line. The goals set are to establish which workflows
participants select as more relevant; to uncover which type and amount of workflow
information they use; and which common patterns they apply for ranking.

1By superimposing we mean one workflow performs a supertask of the other workflow.

www.spss.com�

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 109

No. Biological
similarity

Shape
similarity

Confidence

1 4.5 (2.0) 5.0 (1.5) 3.0 (1.1)
2 5.8 (1.9) 6.8 (1.4) 2.9 (1.0)
3 7.0 (1.7) 6.8 (2.0) 3.3 (0.8)
4 6.2 (1.9) 5.0 (2.4) 2.9 (1.4)
5 8.0 (1.6) 8.4 (1.3) 3.2 (1.4)

Table 4.3: Similarity (1 = identical, 9 = no similarity) of 5 workflows with respect to
the exemplar.

Agreement between participants

This section analyses whether the rankings users generated in the experiment are com-
parable. First, we determine what values were assigned on average to workflow pairs.
Then, we establish whether there is a degree of consistency in these assessments, by
calculating the degree of correlation in the answers given by different participants.

Similarity values assigned Users ranked the similarity of the exemplar workflow
with respect to the comparison workflows as indicated numerically in Table 4.3.

The table shows the mean of similarity values given by all respondents per work-
flow. The standard deviation is given inside the brackets (two standard deviations away
from the mean account for roughly 95 percent of the people).

The respondents reported medium confidence overall in their own judgment. Two
thirds of respondents found estimating the similarity of biological functionality very
difficult to difficult. The estimation of the similarity of shape similarity on the other
hand was a difficult task for only 25 percent of respondents.

Participant agreement Did participants agree on their answers? To establish
whether there was consistency in the rankings, one needs to know the degree of cor-
relation between the different rankings. We performed the following calculations to
obtain this statistic. The user similarity values of Table 4.3 were transformed for all
participants to reflect the order in which each individual had ranked the workflows
(in order of decreasing similarity). We then built a correlation matrix based on the
transformed data and a statistical test called Spearman’s correlation test. Spearman’s
correlation test is a measure of association between rank orders.2

2With respect to the data, for biological functionality similarity, we only used data from people with
a biological background (nine respondents and five workflows, no missing values), whilst taking into
account data from all 13 respondents for shape similarity.

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 110

No. Sub
task

Super
task

I/O Type Services I/O
paths

1 2.4
(1.0)

2.0
(0.9)

2.5
(0.9)

2.2
(0.8)

2.1
(0.5)

2.0
(0.6)

2 3.0
(0.8)

2.6
(0.9)

2.9
(1.1)

2.1
(0.9)

2.2
(0.8)

2.1
(0.9)

3 3.0
(0.8)

3.3
(0.8)

2.6
(0.8)

2.2
(0.8)

2.5
(0.5)

2.3
(0.7)

4 2.3
(0.9)

3.0
(0.8)

2.4
(0.9)

2.1
(0.8)

2.3
(0.7)

2.3
(0.5)

5 3.6
(0.7)

3.3
(1.2)

2.5
(1.1)

2.5
(1.1)

2.5
(1.1)

2.5
(1.1)

Table 4.4: Usefulness (1 = best, 4 = worst) of six factors for estimating similarity of 5
workflows with respect to the exemplar.

For rankings based on biological functionality, only for six out of 36 possible par-
ticipant pairs (e.g. between participant 2 and participant 5) the results were correlated
(at a five percent significance level). This means that participants in general disagreed
on how to order the workflows according to their biological similarity and therefore
lacked consistency in their rankings. A similar result was found in the correlation ma-
trix for rankings based on shape: based on the 13 users, only 16 out of 77 pairs showed
correlation (at a five percent significance level). As it stands, the current data set cannot
serve as a general benchmark or gold standard.

Type and amount of information used and common patterns

One way to explain the diversity in behaviour during ranking we described above is to
investigate whether different users use different criteria for establishing workflow (dis-)
similarity. Users ranked the usefulness of the factors for establishing workflow simi-
larity as indicated in Table 4.4. We are interested to find the effects of the six factors
on the similarity, whilst the factors may be interacting (e.g. once people looked at how
many services are shared, they might not care any more whether any inputs and outputs
are shared). A common statistical way to establish such findings is through a Between-
Subject Analysis of variance (ANOVA) (see davidmlane.com/hyperstat for a
good introduction). Analysis of variance assumes that the groups come from popula-
tions with equal variances. To test this assumption, we used Levene’s homogeneity-
of-variance test, only to find that the assumption was violated in all cases. As a result,

davidmlane.com/hyperstat�

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 111

little can be said on how particular factors impact the similarity measures based on
ANOVA.

One explanation for the inconsistencies is that different people might be using dif-
ferent metrics, some of which are not included in the list of six factors. One participant
for instance indicated that the total number of services (i.e. the difference in size of
workflows) played a role in the assessment of shape.

With respect to future white box experiments, one logical solution would be to
fix the (combination of) criteria people can use, and see what similarity values across
participants this generates.

Impact on future experiments

Overall, the outcome of the experiment is rather negative. The overall message is that
the task as presented to users is too difficult. This leads to inconsistent results. With
respect to future experiments, this issue can be addressed by:

• Providing subjects with a clearer task definition, e.g. practical reuse tasks such as
finding extensions to current workflows. We take this approach for benchmarks
2 and 5.

• Providing subjects with more information about the workflow, say to include
textual and semantic annotation of the constituent services and overall workflow
task. We invest in creating detailed workflow documentation for benchmark 5.

• Recruiting subjects with more experience with the workflow environment such
as contributors to the myExperiment.org workflow portal. We take this approach
for benchmarks 3,4 and 5.

• Recruiting subjects with more familiarity with the workflow corpus topic, for
instance the original workflow authors. We take this approach for benchmarks
3,4 and 5.

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 112

4.3 Experiment 2: cross author, black box re-use

4.3.1 Experimental setup

In this section, we pursue a black box approach to model how users re-use workflows
across authors. The re-use direction captured is B2C. Contrary to the previous experi-
ment, we look at the discovery of relevant workflows in the context of a set re-use task.
The task is to identify fragments in repository workflows that do either a supertask or
a subtask of the provided exemplar workflow. The goal of the experiment is twofold:

1. Document which workflows bioinformaticians select as relevant to the set task
through their decision whether or not a workflow is a match to an exemplar
workflow.

2. Document which fragments of workflows bioinformaticians select as subtasks or
supertasks to an exemplar workflow.

4.3.2 Participants

During a myGrid Training Day event (April 2006), five out of a total of 21 partici-
pants completed the exercise. Against expectations, the majority of participants of
the training day were software developers or scientists with no bioinformatics back-
ground. The five eligible participants were full-time bioinformaticians without earlier
experience with workflows.

4.3.3 Materials

We used a corpus of workflows and the rendition of those workflows. All are made
available on-line.

A corpus of public workflows

We used the Probeset id 2 Swissport id.xml 3 workflow authored by Paul
Fisher as the exemplar workflow. 29 workflows were pre-selected from Peter Li’s
corpus as the repository, to include known cases where a subtask, supertask or no rela-
tionship is present between the exemplar and the repository workflow. All workflows
were rendered on a diagram showing the inputs and outputs of services used in the

3We chose not to correct the SWISSPROT spelling error for authenticity.

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 113

orchestration. They were printed on separate pages of A4 format and stapled together.
The exemplar workflow was shown on top. Workflows diagrams were stripped from
all colour since colour reflects a Taverna Processor’s type (Web service, local Java
class, ..), which does not matter for this exercise and it was a source of confusion in
the previous experiment.

4.3.4 Procedure

The experiment was presented as an exercise that was an integral part of the Training
Day. The stated goal of the exercise was to contribute to the myGrid team’s under-
standing of workflow re-use. Users were handed out the stapled stacks of workflow
diagrams and asked to remove the exemplar on top and use it alongside the stack while
flipping through it. They were then asked to mark up the workflows as being a match or
no match, and to circle relevant areas on the diagrams that were considered supertasks
and subtasks.

4.3.5 Results

Participants took 20 minutes on average to do the workflow comparisons. Out of five
participants, only one completed the full set of comparisons.

On the upside, the one participant that completed the exercise showed good cor-
relation with our pre-selected sets of subtasks, supertasks and unrelated tasks. This
suggests that re-use by bioinformaticians is in fact doable based on limited workflow
documentation.

On the downside, the other participants were generally frustrated with the experi-
ment and thought it was too hard. Their motivation to assess the suitability of workflow
candidates was affected by several factors. Some diagrams proved to have a too small
print, making it a chore to interpret them. Secondly, the lack of textual descriptions
of what the services and workflows do proved a hurdle, and made people unwilling to
investigate whether there exists a relationship between the workflows. Finally, the fact
that software developers and the other scientists did not “have to” participate in the
exercise did not help motivation.

When it comes to re-use, there is the trade-off between doing things yourself and
making the effort to find out whether existing things can be re-used. If scientists novel
to workflows are to make the effort of assessing their suitability for re-use, documen-
tation beyond what is captured in the basic diagram is going to be needed.

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 114

Given our goal to capture how bioinformaticians do re-use (when they are moti-
vated enough), in the next experiments, we address the concerns raised by resizing
diagrams, creating workflow documentation, selecting participants with a higher level
of expertise and organizing dedicated experiment sessions.

4.4 Experiment 3: cross author, black box re-use

4.4.1 Experimental setup

This experiment takes a black box approach to model how users re-use workflows
across authors, focusing on re-use direction B2A. We look at the discovery of useful
workflows in the context of a specific re-use task. The task for the participants is kept
simple by asking for boolean assessments of “usefulness” instead of similarity scores
and the metrics used during matching.

Useful is specified to mean that one workflow either (i) provides an alternative to
the other, (ii) provides an extension to it (supertask) or (iii) provides a useful frag-
ment of it (subtask). For example, each participant was asked to assess whether the
pair of the AffyidToGeneAnnotation2 workflow, taken from one corpus, and
the Probeset id to Swissport id, taken from another, were useful taken to-
gether, or not.

4.4.2 Participants and procedure

The results of the previous experiments lead us to reconsider the number of participants
in favour of fewer participants but with more workflow experience and familiarity with
the corpus.

Peter Li and Paul Fisher are the two bioinformaticians participating in the study.
In what follows they are denoted as expert 1 and expert 2, respectively. Together they
authored some 300 bioinformatics workflows with the Taverna workbench. They were
asked to make an assessment of similarity between their own workflows and workflows
created by the other expert. Both were contacted separately and asked to perform the
exercise in our presence.

4.4.3 Materials

All data sets are available from www.myexperiment.org/benchmarks.

www.myexperiment.org/benchmarks�

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 115

Workflow corpora

We chose a corpus that consists of 67 workflows investigating Graves’ disease [LHJ+04]
authored by expert 1 and 78 investigating Trypasonomiasis (sleeping sickness) in cat-
tle, authored by expert 2. We randomly chose 19 workflows built by expert 1 and 11
workflows built by expert 2 from their respective corpora.4

4.4.4 Procedure

We made the random selection in the following way. We took the amount of time
experts can reasonably spend on an exercise without getting tired (about two hours),
and divided that by the average amount of time it took experts to make a few example
comparisons (30 seconds). We added one dummy workflow to expert 2’s set to be able
to check whether the experts are internally consistent in their assessments. The two
sets were printed and collected in two bundles of A4 paper.

Each participant was given the stacks of workflow diagrams and asked to assess
whether pairs of workflows taken from the 2 different corpora were useful (as defined
earlier) for each other, or not.

4.4.5 Results

The result of the exercise were two sets of assessments of usefulness, each 12 x 19
in size, i.e. a total of 456 observations. To see whether the experts were internally

consistent, as said we added a dummy workflow. Both authors handled the appearance
of the dummy well.

To establish whether there was consistency between the authors, we calculated the
kappa coefficient for inter rater agreement, as commonly used in psychology exper-
iments. Table 4.5 shows how often the experts (dis-)agreed on whether 2 workflows
were useful for each other. This translates in a kappa measure of 0.678, which indicates
a good level of agreement between the subjects. Table 4.5 shows the data used to cal-
culate kappa. It details how often the experts (dis-)agreed on whether two workflows
were useful. The numbers indicate how many times the experts agreed and disagreed
with each other. For example, there are 11 cases where expert 1 thought a pair of
workflows was useful together, but where expert 2 thought they were not.

Building the benchmark took Paul 2 hours, and Peter 1.5 hours. We merged the

4There is no particular reason why more workflows were chosen from expert 1 than from expert 2.

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 116

Expert 2
not

useful

Expert 2
useful

Total

Expert 1
not

useful

148 19 167

Expert 1
useful

11 50 61

Total 159 69 228

Table 4.5: Agreement between the experts in their workflow exercise assessments.

results of this exercise to form 1 benchmark, with a bias towards positive similarity
assessments, i.e. in case only one of the experts thought a pair was similar, we still
included it in the benchmark as similar.

4.5 Experiment 4: personal, black box re-use

4.5.1 Experimental setup

This experiment is similar to the previous one in its setup. It again takes a black box
approach to model how users re-use workflows, based on participants with a high level
of expertise and familiarity with the corpus. This time we consider personal re-use,
however (re-use direction A2A). The task set for participants is to identify different
versions of a given workflow authored by the participant, where the retained workflows
include both the most recent and earlier versions of a given exemplar workflow.

4.5.2 Participants and procedure

Peter Li and Paul Fisher are again the two bioinformaticians participating in the study,
denoted as expert 1 and expert 2, respectively. They were contacted separately and
asked to perform the exercise while we were present.

4.5.3 Materials

All data sets are available are available from the myExperiment Wiki.5.

5Web site: www.myexperiment.org/benchmarks

www.myexperiment.org/benchmarks�

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 117

Workflow corpora

We used 67 workflows built by expert 1 and 78 built by expert 2. For both the expert 1
and expert 2 subcorpus we chose a workflow which clearly had a lot of relation to the
work the authors had done in the past. We asked expert 1 to identify different versions
of his AffyidToGeneAnnotation2 workflow in his corpus and asked expert 2 to
do the same for his corpus based on his Probeset id to Swissport id work-
flow.

4.5.4 Results

Each expert built a benchmark based on their respective corpus. Versioning bench-
mark 1 consisted of all 48 workflows identified by expert 1 as different versions of
AffyidToGeneAnnotation2 based on his corpus. Versioning benchmark 2 cre-
ated by expert 2 identified 19 different versions of Probeset id to Swissport id

within his workflows. Building the benchmark took each author about half an hour.

4.6 Experiment 5: cross author, grey box re-use

4.6.1 Experimental setup

Experiments 1-4 explored either a white box or black box approach to modelling user
behaviour during discovery and editing time. They established that it is difficult to ob-
tain sound results for a white box approach and that it is possible to obtain statistically
valid results for a black box approach. This experiment explores the middle ground or
“grey box” in that it aims to:

1. elicit the steps participants undertake to go about solving a re-use problem in a
controlled environment;

2. elicit which types of workflow information matter during which steps; and

3. capture the resulting solutions in a fine-grained manner by documenting the par-
ticular workflow edit operations undertaken.

In terms of the re-use subtasks undertaken, the experiment is set up to capture
both workflow discovery and workflow editing. In terms of workflow edit operations
undertaken, workflow insertion, replacement and extension are investigated. In terms

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 118

of the re-use directions, we look at cross-author discovery (in particular, the B2A, A2B
and B2C scenarios).

4.6.2 Participants

We ensured a high number of participants with a high level of expertise. Participants
were either seasoned Taverna users or experienced bioinformaticians. The list of 24
participants is given in Appendix A.

4.6.3 Materials

Workflow re-use exercises were developed in conjunction with Franck Tanoh, ser-
vice curator of the myGrid project,6 and Paul Fisher, bioinformatician. 18 workflows
from 12 authors were selected to ensure a broad topical range and variety in work-
flow authoring naming style. All data is available from the myExperiment Wiki at
www.myexperiment.org/benchmarks.

Workflow annotation

The workflow documentation was of high quality. All constituting services were
tested and then curated with natural language and ontology terms by Franck Tanoh,
the myGrid service curator. For two months he semantically annotated 18 workflows
containing 98 Web services. One of the 18 curated workflows is shown in Fig. 4.18.
Next to the workflow diagram, it shows the workflow’s overall task, overall inputs and
outputs and constituting service inputs and outputs. In addition, semantic tags from
the myGrid bioinformatics service ontology were added.7 Workflows were annotated
in two stages:8

1) Black box annotation. The entire workflow is regarded as a Web service with
inputs and output parameters. A general description of what the workflow does is
added. Associated ontological terms to the description are added between brackets,
e.g. [retrieving], [pairwise local alignment].

2) White box annotation. This comprises a detailed annotation of each Web service
in the workflow. It provides the following information on each service:

6Web site: http://www.mygrid.org.uk
7The ontology is navigateable at http://www.mygrid.org.uk/ontology/OwlDoc/

index.html
8The following description of the annotation process is due to Franck Tanoh.

www.myexperiment.org/benchmarks�
http://www.mygrid.org.uk/ontology/OwlDoc/index.html�
http://www.mygrid.org.uk/ontology/OwlDoc/index.html�

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 119

• Service name.
• Name of the service provider.
• Service type e.g. WSDL, Soaplab.
• Service description and ontological terms associated to it. These terms are de-

fined as, operation Task, operation Resource and operation Method.
• Each input and output parameter and its semantic type and format.
Figure 4.15 describes how the annotation is carried out.

1. The first and very difficult step is to find the associated documentation of a given
workflow or Web service.

2. The documentation is then carefully interpreted and the workflow tested using
Taverna.

3. Information gathered from the documentation, the test, and the domain ontology
is entered in an annotation tool resulting in semantically annotated workflows
and Web services. At this stage, if missing terms are encountered in the ontology,
ontology experts are notified.

4. Annotated workflows and Web services are published to a local registry where
they will be used and tested by bioinformaticians and biologists.

5. Based on user feedback more description text or ontological terms can be added
to previously annotated workflows and Web services.

To date, most of the Taverna workflows do not have natural language documenta-
tion by default. This lack of documentation greatly affects the speed of annotation. In
some cases, workflow providers need to be contacted in order to annotate their work-
flow. As the number of workflows and Web services grows, workflow and service
providers will need to follow suit and annotate their own workflows or services.

Exercise format

Given the lack of capabilities for editing multiple workflows in existing workflow sys-
tems, we decided to adopt a paper solution for the purposes of the experiment. For the
workflows in our selected corpus, the amount of workflow information divulged meant
a minimum of one A4 sized piece of paper was needed per workflow and a maximum
of four A4’s.

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 120

Figure 4.15: The workflow annotation process.

Given our aim to document both how participants discover workflows and then
how they go about editing them subsequently, we wanted to make sure participants
were able to keep the overview in the process. As a result, we adopted A1 poster
sheets to lay out the re-use task description, the workflow to be adapted in the middle
of the poster and the repository workflows huddled around it.

Fig. 4.16 shows the solved example exercise shown to participants, shrunk from its
original A1 sized format. The challenge is to to solve the task stated at the bottom by
adapting the workflow with the circled number (number 1, shown in detail in Fig. 4.18)
using drawings on the poster. The particular task in question is to discover and then edit
the workflow(-s) which enable the given workflow to obtain a list of gene identifiers
by simplifying its BLAST output file. Note that we do not inform participants which
edit operation to undertake (in this case, an extension).

To make clear to participants which possibilities they have at their disposal for
editing workflows, the instructions directed them to Fig. 4.17 (again shrunk from its
original A1 sized format).

4.6.4 Procedure

We briefly describe the pilot studies we ran, the distribution method and the analysis
method.

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 121

Figure 4.16: An example workflow exercise in user experiment 5.

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 122

Figure 4.17: Workflow edit operations allowed by participants in user experiment 5.

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 123

Figure 4.18: An example curated workflow

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 124

Pilot studies

The exercises were tested in two pilot studies with two post-doctoral bioinformaticians,
Katy Wolstencroft and Andrew Gibson. Their feedback led us to adapt the vocabulary
used in the exercise instructions for the target audience, to refine the curation and to
remove ambiguities in the re-use task descriptions. Paul Fisher verified the validity
of the correct solutions to a given task by creating the corresponding workflows in
Taverna for all tasks.

Distribution

Remote participants were sent a tube by Royal Mail containing the instructions, the A1
posters and some quality Belgian chocolates. To local participants a tube was hand-
delivered.

Analysis method

Results of the participants on the 11 exercises were entered into SPSS based on the
following seven variables: Difficulty, Confidence, Relevance of (up to 5) candidate
workflows. They were analysed based on Spearman correlation and Kappa values
for inter-rater agreement. Given that Cohen’s traditional Kappa value works for only
two participants, we relied on a multi-rater Kappa measure, described in [SC88] and
made available for SPSS as a separate macro.9 Performance results against the correct
answers were calculated from Excel.

4.6.5 Results

33 tubes were distributed and 24 were returned. Based on the above seven variables,
1848 observations were entered into SPSS. The edit operations made by participants
were not processed due to time constraints.

Analysis of ratings shows participants in general had high confidence (Figure 4.20;
blank in the legend means no answer provided) and found the exercises to be of easy
to moderate difficulty (Figure 4.19; blank in the legend means no answer provided).
Surprisingly, analysis of inter-rater agreement showed that they did not agree which
exercises were easy, moderate or difficult. Similarly, they did not agree when they had

9Available from ftp://ftp.spss.com/pub/spss/statistics/nichols/macros/
mkappasc.txt

ftp://ftp.spss.com/pub/spss/statistics/nichols/macros/mkappasc.txt�
ftp://ftp.spss.com/pub/spss/statistics/nichols/macros/mkappasc.txt�

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 125

Figure 4.19: Perceived difficulty of the exercises during experiment 5.

Figure 4.20: Participant confidence during experiment 5.

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 126

Blanks excluded Blanks mean no
Maybe excluded 79 83
Maybe included 87 91

Table 4.6: Average scores of participants by assessment scheme.

high, medium or low confidence. An explanation for this apparent paradox is either
that participants come from very different backgrounds and thus find different tasks
challenging, or they use a different internal scale to assess confidence and difficulty.
Their results on relevance assessments suggest the latter is true.

Participants agreed well on the relevance assessments made - a multi-rater Kappa
value of 0.666 was obtained, which is considered to be very good (for a discussion of
the multi-rater Kappa measure see [SC88]). Contrasting participant relevance assess-
ments with the correct solution, participants on average were right in 83% to 91% of all
cases, depending on the scheme used to assess a given answer. Table 4.6 summarises
their performance (in percent) based on four assessment schemes. The schemes vary
on:

• whether they should count a “maybe” answer as a correct answer (which leads to
better scores) or whether it should be excluded from the performance measure.

• whether blank answers should count as negative answers (which leads to bet-
ter scores, given that the majority of candidate workflows are not relevant to a
particular task) or instead should be excluded.

The main sources of error were due to:

1. Incomplete exercises because of a natural “blind spot” for participants in the
exercise material, namely the workflow positioned in the left down corner of the
A1 sheets. This phenomenon had not shown up in the pilot studies.

2. Incomplete or ambiguous descriptions of data items.

3. Assumptions made on the required generality of a solution across species.

4. Assumptions made on the admissibility of additional “shim” or glue services,
not available from any of the presented workflows.

Finally, we analysed whether the amount of expertise building workflows or the
time taken to complete the exercise showed a correlation with the level of correctness

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 127

obtained. Neither factors proved to be determinants. This indicates that people with a
good bioinformatics background in general can muster the tasks of editing workflow
diagrams and that some people simply work faster than others.

4.7 Related work

In this chapter we built a series of human benchmarks for workflow discovery. A a
large number of possibilities was explored, ranging from eliciting the metrics experts
use to establish similarity to capturing solely the end result of a task assessment in a
given context, i.e. the collection of workflows an expert came up with to solve a task.
Neither the workflow literature nor the Web services literature contain many examples
of such work. Other disciplines have more of a tradition in using human-generated
benchmarks to assess the performance of automated techniques, e.g. computational
linguistics.

In the workflow literature, not much work exists on building human benchmarks.
Recent work in the area has aimed to uncover the particular metrics people use for
establishing workflow similarity. Bernstein and colleagues [BKBK05] look for the
best semantic similarity measures to rank business processes from the MIT Process
Handbook, based on a process ontology. The processes are non-executable workflows
hence no reuse of workflows in a Web services context is envisioned. The work of
Wombacher [Wom06][WR06] seeks to elicit the similarity metrics used by workflow
researchers when performing the task of comparing the control flow complexity of
workflows described by Finite State Machines (FSMs). Data flow is left outside the
scope. Wombacher also investigates which metrics, known from workflow mining and
FSM techniques, are able to reproduce the human rankings from this task.

In the service discovery literature, most of the papers presenting techniques ignore
how humans go about discovery and focus instead on a technical evaluation, demon-
strating how expressive a technique is, or how scalable. An exception is the work by
Dong [DHM+04], who built a small human-built benchmark based on real Web ser-
vices to test the performance of the Woogle tool for Web service search. We know of
two community initiatives to compare Web service discovery techniques: the Seman-
tic Web Services Challenge and the Web Service Challenge10. Both initiatives have
limited involvement from users. In the former, a challenging scenario is put forward

10Web sites: ws-challenge.org and sws-challenge.org

ws-challenge.org�
sws-challenge.org�

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 128

involving fully automated discovery and invocation. In the latter, techniques are eval-
uated by a subjective score issued by the organizers on the system design as well as on
performance and accuracy.

Other fields have been more active in developing human benchmarks for evaluat-
ing computational techniques. The practice is commonplace in for example Natural
Language Generation (see for instance [Kar03]).

4.8 Summary

The apparent lack of end user-based evaluation for discovery tools is an important
finding. It motivates the development of benchmarks for workflow discovery and the
assessment of workflow techniques on these benchmarks.

In the controlled environment of a series of user experiments, this chapter explored
how one class of scientists, bioinformaticians, do workflow re-use and discovery. The
following findings were obtained.

4.8.1 Workflow re-use and discovery requirements confirmed

The relative impact of several of the earlier posited requirements on re-use and dis-

covery were tested. Table 4.7 summarises the outcomes. We altered the following
parameters between the experiments:

• The discovery task expected of participants. The discovery task involved either
finding similar workflows or complementary workflows. In the last experiment,
we also recorded how participants edited the workflows found.

• The relation of the participant with respect to workflow authorship. She is ei-
ther discovering her own workflow, re-using one by a collaborator or one by an
external party.

• Participant motivation to complete the exercises. This ranged ranged from low
to high in the experiments, depending on the experimental setup.

• The expertise of participants. Low expertise means participants had almost no
experience with bioinformatics. Medium means their main background is in
another field but they understand basic bioinformatics notions. High means they
are active in bioinformatics research.

• The quality and amount of workflow information available per workflow. Low
quality and amount means only a workflow’s diagram is shown with the names

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 129

Exp. Discovery
task

Relationship
with

original
workflow

author

Motivation Expertise Documentation
quality and

amount

Outcome

1 Find
similar

External
parties

Low Low Low Negative

2 Find
similar

External
parties

Low Medium Low Negative

3 Find
similar

Original
author

High High Low Positive

4 Find
similar

Collaborators High High Low Positive

5 Find and
edit

similar
and

comple-
mentary

Collaborators
and external

parties

High High High Positive

Table 4.7: Summary of user experiments into workflow discovery.

given by the original author. High quality and amount means a professional
curator added natural language text explanations and semantic concepts to the
workflow and its constituent services.

The outcome of each experiment was judged to be positive only when the results
from the exercises showed a level of agreement between participants and were con-
firmed by a bioinformatician as being sensible. The experiments revealed the follow-
ing:

• Bioinformaticians are capable of all types of workflow discovery we considered,
when the conditions are right.

• The commonsense expectation is that participant familiarity with the workflow
author, participant motivation and participant expertise correlate positively with
valid answers to discovery tasks. This expectation was confirmed in all experi-
ments.

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 130

• Lots of quality workflow documentation is no requirement to achieve good re-
sults when it comes to discovery of one’s own workflows or workflows by col-
laborators, as shown by experiments 3 and 4 which had low amounts of docu-
mentation (see Section 4.1.3).

• Experiment 5 showed that the combination of motivation, expertise and quality
metadata enables discovery from external parties. Contrasting this finding with
the outcome of experiment 2 where participant expertise was medium suggests
that either the motivation factor or the quality documentation factor could be the
deciding one. Taking into account that the motivation in experiments 1 and 2
was affected substantially by the lack of documention, we concluded that docu-

mentation plays a crucial role either indirectly (to drive motivation) or directly
(to inform the discovery process).

4.8.2 Understanding of workflow re-use and discovery behaviour

Experiments 1 and 5 were designed to create an understanding of the behaviour bioin-
formaticians exhibit during workflow re-use and discovery. Experiment 1 formulated
a range of plausible hypotheses to uncover patterns of searching and matching bioin-
formaticians use to establish workflow similarity in general. How do they rank work-
flows? What criteria are used and in which combination? However, it turned out the
task as presented to inexperienced bioinformaticians was too difficult and no conclu-
sive results could be drawn.

Experiment 5 also had the ambition to model bioinformatician behaviour, yet fo-
cussed less on the notion of the similarity and more on how the overall re-use process

is performed, in particular the assessment of relevance of potential workflow candidate

solutions and their subsequent editing. It presented specific re-use cases to experienced
bioinformaticians.

The same study showed that relevance assessment and editing are done in two dis-

tinct phases. First, participants scanned the whole population of available workflows.
After this, editing was done on the workflows marked as relevant.

It also documented which sources of information are used in which phase. For
both phases, the workflow diagram was the first and most used point of recourse for
finding information, despite its low detail and ambiguity. This finding underlines the
power of using a visual medium. Textual workflow and service inputs and outputs were
also used eagerly in both phases, but less so than the diagram. The overall workflow

CHAPTER 4. BUILDING BENCHMARKS FOR WORKFLOW RE-USE 131

Benchmark Experiment Number
of partici-

pants

Behaviour
captured

Number
of assess-

ments

Participant
agreement

(Kappa value)
1 3 2 Similarity

assessments
145 N/A

2 4 2 Similarity
assessments

456 Very good
(0.678)

3 5 24 Relevance
assessments

1848 Very good
(0.666)

4 5 24 Editing Unprocessed Unprocessed

Table 4.8: Summary of human benchmarks for workflow re-use

description and workflow name were deemed useful for relevance assessment only.
The work of participants translates into a documented set of decisions made during

the workflow re-use process. The three user experiments which had positive outcomes
contribute four benchmarks with different characteristics.

Benchmark 1 collects similarity assessments made by a workflow author about
pairs of her own workflows. In Benchmark 2, a collaborator made similarity assess-
ments on those same workflows. Benchmarks 3 and 4 rely on the re-use tasks solved by
participants in user experiment 5. Benchmark 3 contains the assessments made regard-
ing the relevance of a set of workflows to solve the re-use task in question. Benchmark
4 captures the next step in solving the task by collecting the edit operations participants
undertook to solve it. Due to time constraints, these edit operations have not been en-
tered into electronic format yet and their statistical analysis has not been performed.

All benchmarks were created by participants who felt confident while creating
them. For benchmarks 2 and 3, they also agreed strongly on the assessments made,
as shown by the Kappa statistic for inter-rater agreement. Even though a high level of
agreement was reached, agreement was never perfect. For the case of benchmark 3,
the disagreement could be measured in terms of correctness of answers.

Chapter 5

Workflow discovery techniques

The user experiments showed that workflow re-use and discovery is difficult for bioin-
formaticians. To support them, in this chapter we consider a range of automated dis-
covery techniques, tailored to workflows created in the Taverna workflow environment.

5.1 Overview of techniques

All the techniques investigated in this chapter work based on similarity-based match-
ing of workflows. None were designed explicitly to support complementarity-based
matching between workflows. The techniques differ mainly on the type of information
they exploit. In this introductory section we discuss the nature of Taverna workflows,
list the various sources of documentation used by the techniques and how the tech-
niques relate to existing work. We also provide background to the structure used to
organise the techniques in this chapter.

5.1.1 Data flows in Taverna

All techniques in this chapter are designed to work over workflows written with the
Taverna workbench [OGA+05]. Taverna was chosen given its large user base of scien-
tists and its publicly available workflow base at www.myexperiment.org.

Taverna has adopted a formal semantics based on data flow. It implements a lambda
calculus with a list monad [Tur06]. In terms of the formal definition of a data flow
adopted in Chapter 2, Taverna workflows deviate from our assumptions as follows:

1. Not only concrete workflows. In Taverna 2, it is possible to dynamically select
at run time which service to run from a pre-specified group of services, violating

132

www.myexperiment.org�

CHAPTER 5. WORKFLOW DISCOVERY TECHNIQUES 133

our assumption that all services which will be used are known at design time.

2. Not only Web services. Taverna steers multiple service types.

The techniques presented here are only able to deal with concrete workflows. In
practice, this is not problematic for our purposes, given that all workflows in our cor-
pora are concrete workflows. The second issue is more worrisome. It lead us to work
at the level of abstraction that is specific to Taverna, namely that of the Processor
[OGA+05]. With the exception of those techniques that work solely over semantic
descriptions, our techniques are specific to the Taverna environment.

5.1.2 Source of workflow documention

Given the expense of obtaining high quality workflow documentation, we consider
techniques which operate on different levels of documentation. Table 5.1 organises
the techniques by the formalism they rely on to query workflows and by the level of
detail at which workflows are queried. Text refers to techniques using natural language
descriptions. RDF refers to techniques using light-weight semantic descriptions. OWL
refers to techniques using rich semantic descriptions.

Using natural language descriptions. Three techniques were explored to exploit tex-
tual information in workflows. Firstly, a simple wrapper to the Google search
engine API was built to investigate Google’s performance on unprocessed work-
flow descriptions. Secondly, we adopted the existing Woogle service discovery
tool for text-based service discovery (unrelated to Google) and adapted it into the
Woogle4WF tool which translates a workflow to look like a service. Thirdly, to
enable querying the internal structure of a workflow in conjunction with textual
descriptions of its constituent services, we developed GUB4WF, a tool exploit-
ing an existing graph matching library for sub-isomorphism detection.

Using light-weight semantic descriptions. We adopted the existing JMFeta tool for
semantic service discovery. The tool relies on a similarity metric and annota-
tions of services made based on the RDF(S) subset of the Resource Description
Framework (RDF) language. It allows to query for similar workflows by provid-
ing it with workflow annotations that look like regular service annotations.

Using rich semantic descriptions. We analysed the possibilities and limitations of
using the description logic based Web Ontology Language, OWL, for querying

CHAPTER 5. WORKFLOW DISCOVERY TECHNIQUES 134

Formalism Technique not
using workflow

structure

Technique using
workflow
structure

Text Google API,
Woogle4WF

GUB4WF

RDF JMFeta
OWL OWL4WF

Table 5.1: Summary of the considered automated discovery techniques.

the structure of data flows and proposed a novel workflow ontology. The combi-
nation of using selected example queries over the developed workflow ontology
with the Racer description logic reasoner was dubbed OWL4WF.

5.1.3 Chapter structure

We organise the techniques of this chapter according to the three bottlenecks specific
to workflow discovery identified in Chapter 3:

1. The discovery model

2. The process knowledge acquisition bottleneck

3. The ability to rank workflows

We regard the process knowledge acquisition bottleneck as the most pressing, i.e.

the need to provide sufficient information to a discovery technique for it to work. Who
will provide annotation to instantiate the discovery model in a global community? Who
provides user training? Second, what kind of discoveries does the logical document
view enable? No one technique is likely to cover all. Third, do the techniques allow for
any rankings over workflows? The choice of discovery model determines what type of
workflow information a technique requires and hence to a large extent determines the
seriousness of the bottleneck.

Characterising the discovery model

Before characterising each individual technique, it helps to contrast the choice of dis-
covery model made for each. To make such a comparison, we have resorted to a

CHAPTER 5. WORKFLOW DISCOVERY TECHNIQUES 135

Index Terms Full Text Index Terms +
Structure

Full Text +
Structure

Retrieval JMFeta Google4WF** OWL4WF*,
GUB4WF**

Woogle4WF**

Table 5.2: Overview of workflow discovery tools in relation to document logical view.

classification of information retrieval tasks and logical views of documents from the
information retrieval literature.

The classification in question is proposed in the standard work of [BYRN99] on
information retrieval. The authors distinguish between the user task of retrieval and
the user task of browsing. For reasons of scope, we focus on the retrieval task. Much
can be said though in favour of a browsing approach to workflow discovery. This
approach is complementary to the retrieval approach and lends itself to environments
like a Web portal (e.g. myExperiment.org).

For the retrieval task, the techniques work either over a logical view of a document
where a selection of words describes the text (index terms), a logical view where the
collection of all words in the text represents the text (full text) or a view where a
document is represented by its full text and structure (e.g. sections and chapters).

When it comes to workflow retrieval, we define the document logical view of index

terms as any terms chosen by an (possibly automated) annotator to describe the work-
flow, full text as the entire collection of words that describe both the workflow and
its services, and full text and structure as all the information available with full text,
combined with any information about coordination of a workflow’s services. Note that
we do not assume a single representation language to represent this type of informa-
tion. Candidate languages to capture workflow information include natural language,
Semantic Web languages as well as traditional process formalisms such as Petri nets.

Consider the example workflow in Figure 4.18 on page 123, where a bioinformat-
ics workflow is shown. Index terms in this example would be the bracketed terms
that do not occur in the original workflow definition but instead were chosen by an
annotator. Full text are all the words seen in the diagram, augmented with terms from
different sources such as textual service descriptions by the service providers or ontol-
ogy concepts written in OWL. Full text and structure in addition includes a detail of
the control and data flow between services, including but not limited to the links shown
in the diagram.

Table 5.2 relates the discovery model of each of the techniques to the document

myExperiment.org�

CHAPTER 5. WORKFLOW DISCOVERY TECHNIQUES 136

logical views. In this chapter we cover each of the views. The table also indicates
whether we have adopted a technique without change, designed it (indicated with “*”)
or designed and implemented it based on existing work (indicated with “**”).

Before proceeding with a detailed discussion of each of the techniques, we relate
them to workflow discovery matching types and existing work.

5.2 Related work

Table 5.3 shows the techniques presented in terms of the workflow match types identi-
fied in Chapter 3. We make the following observations about the relationship with the
techniques covered in the related work section of Chapter 3 (page 91):

• None of the techniques presented here support complement-based discovery.

• In Sections 5.3 (page 138) and 5.4 (page 138) text-based approaches are pre-
sented to exploit the textual information captured in a workflow. Textual infor-
mation is much easier to gather than formal annotation.

• Only two techniques provide detection of identical workflows down to the level
of linked operations (the SameW metric). One of these, GUB4WF, has been
implemented as a prototype whereas the other, OWL4WF is only available as a
proof of concept.

• Section 5.6 on page 141 investigates how workflow structure can be encoded into
a workflow ontology based on the Web Ontology Language OWL. None of the
techniques considered in Chapter 3 allow semantic discovery based on workflow
structure.

• Finally, Section 5.7 on page 151 explores a graph matching optimization that
alleviates the performance issues of graph-based approaches.

We are now ready to discuss each of the techniques in detail, based on their docu-
ment logical view, process knowledge acquisition bottleneck and ability to rank work-
flows.

CHAPTER 5. WORKFLOW DISCOVERY TECHNIQUES 137

GUB4WF OWL4WF Woogle4WF Google4WF JMFeta
Complement based

ComplPar no no yes no no
ComplOpExact no no yes no no
ComplOpSuper no no no no no
ComplOpSub no no no no no

ComplOpOverlap no no no no no
ComplOpEmpty no no no no no
ComplWExact no no no no no
ComplWSuper no no no no no
ComplWSub no no no no no

ComplWOverlap no no no no no
ComplWEmpty no no no no no
Identity based

SamePar no yes yes no yes
SameOp yes yes yes no yes

SameParsOverall no yes yes no yes
SameParsInternal no yes no no no

SameOps yes yes no no no
SameW yes yes no no no

Table 5.3: A classification of the adopted workflow discovery techniques in terms of
workflow match types.

CHAPTER 5. WORKFLOW DISCOVERY TECHNIQUES 138

5.3 Google4WF: Full Text

We choose Google [BP98] as an exemplar search engine doing full text search over
XML documents. We constructed a wrapper, Google4WF, to use it for workflow dis-
covery. Google4WF is implemented in Java and uses the Google API and the public
Google index.

5.3.1 Knowledge acquisition bottleneck

A workflow often contains not only structural information about how to connect ser-
vices, but also the name of the workflow, the workflow author, service names, input
and output names, sometimes workflow descriptions and descriptions of the services
used, etc. They are available by default in a workflow description. Since our workflow
corpus is published as Scufl XML documents at myExperiment.org, it is available for
indexing to the Google crawler.

5.3.2 Logical document view

We transformed each input workflow into a single query suitable as input to Google,
by joining up all service and data names used in the workflow based on the logical
OR construct. The use of the “related:” query prefix offered by Google, which returns
URLs related to the input URL, did not work in practice.

5.3.3 Rankings

The results found by Google are from the myExperiment.org site directory where the
corpus sample workflows are located. They are returned by querying the Google API.
Since Google are a commercial enterprise, little detail is known about the ranking
mechanisms in use other than a hyperlink-based popularity rating [BP98], which is
of little relevance to us here. We include Google mainly for its status as a de facto
benchmark for doing Web search.

5.4 Woogle4WF: Full Text + Structure

Workflows are not only software specifications. They are also documents which con-
tain natural language. One can therefore imagine applying information retrieval on

CHAPTER 5. WORKFLOW DISCOVERY TECHNIQUES 139

workflow descriptions. To retrieve workflows, we have built a wrapper for the Woogle
[DHM+04] tool called Woogle4WF. Woogle is a tool for similarity search for Web ser-
vices based on standard information retrieval techniques such as the cosine measure,
TF/IDF as well as a novel text clustering algorithm tailored specifically to the structure
of Web service descriptions.

5.4.1 Knowledge acquisition bottleneck

Similar to Google4WF, the tool assumes the existence of a workflow as is, with no
additional annotation. We wrote a parser to translate Scufl workflows in a form that
the Woogle tool can interpret.

5.4.2 Logical document view

This technique regards a workflow as a bag of services. Different parts of the workflow
(its natural language description, the constituent services with their descriptions and
inputs, outputs) are kept as distinct categories during clustering. Structural information
between services is discarded.

With Woogle4WF, essentially we establish a lossy translation of a workflow into
the format of a Web service. We wrote a parser to translate Scufl workflows in a
form that the Woogle tool can interpret. Whereas a Web service is characterized by
constituent operations, a workflow has constituent services. Control flow and data
flow between services is discarded. Woogle4WF maps a workflow into the Woogle
WSDL service input format by regarding each workflow as a WSDL service and each
constituent workflow service as a WSDL operation.

5.4.3 Ranking

The technique takes in a collection of Scufl workflows, clusters these in an off-line
step, and then, when given an input workflow, produces rankings of workflows from
the collection. The Woogle text clustering technique combines multiple sources of
evidence to determine similarity [DHM+04]. In our case, it considers similarity be-
tween the textual descriptions of the workflow’s services and of the entire workflow,
and similarity between the parameter names of the consisting services. The key ingre-
dient of the algorithm is a technique that clusters parameter names in the collection of
workflows into semantically meaningful concepts.

CHAPTER 5. WORKFLOW DISCOVERY TECHNIQUES 140

5.5 JMFeta: Index Terms

We adopted, without change, a tool that does semantic similarity-based service re-
trieval. The tool, JMFeta, was developed by José M. Blázquez of Universidad Carlos
III de Madrid in Spain during a research visit to the University of Manchester.

5.5.1 Knowledge acquisition bottleneck

Ontologies make use of logical expressions to denote concepts. They have been used
with success in bioinformatics, library sciences, engineering and medicine. We regard
ontological concepts as index terms. In the context of workflow discovery, an onto-
logical representation of a workflow is needed. With respect to JMFeta, workflows are
indexed in terms of service ontology concepts found in the myGrid ontology. We refer
back to the discussion of service annotation based on the myGrid ontology in section
4.6.

5.5.2 Logical document view

We adopt the tool as an easy means to query for workflows that are described seman-
tically as an atomic service, without any knowledge of its internal workings. JMFeta
works over service annotations made based on the myGrid service ontology (discussed
earlier in section 4.6).

5.5.3 Ranking

The tool computes the similarity between a query, expressed as a set of (attribute,
value) pairs where the value is taken from the myGrid ontology.1 The idea is that, given
a query, the set of workflows is returned that match this query, sorted by similarity. The
implemented (and as yet unpublished) semantic similarity metric relies on the notion
of a semantic distance between the query and the results. Many of the results are
obtained by query expansion and can be very specific in comparison to the original
query. The matcher compares a query (which corresponds to a description where some
of the attributes can be empty) with a set of workflows described as services. For every
comparison, the matcher provides a value between 0.0 and 1.0 used to sort the results.

1This paragraph is due to personal communication with José M. Blázquez.

CHAPTER 5. WORKFLOW DISCOVERY TECHNIQUES 141

5.6 OWL4WF: Index Terms + Structure

Expanding on the view that a workflow can be seen as a semantically annotated service,
in this section we develop a workflow ontology which extends the notion of a service
ontology with structural connections between services.

5.6.1 The promise of OWL DL for service discovery

It is clear that to discover services, and workflows as a particularly complex type of ser-
vice, one should describe and classify these in a manner appropriate for the searcher.
Manually created classifications of services are inflexible and hard to manage when
they become large, detailed and multi-axial. A description should always be self-
coherent and consistent with respect to others in the classification. The service classi-
fication should evolve as the descriptions evolve, for instance when changes occur in
the functionality or when additional known behaviour is added (i.e. one service can
perform several tasks). To resolve this issue, one can keep service descriptions, clas-
sification and constraint management tightly coupled and treat this within the uniform
framework of Description Logics (DL) [WSG+03], of which OWL DL [HPSvH03]
is an exemplar, W3C standardised, language. Workflows, services and data types are
then grouped into taxonomic hierarchies, together with definitions of the relationships
and constraints between classes and their instances [MM03].

Various authors have experimented before with Web service discovery using DL
reasoning, typically based on the OWL-S upper ontology ServiceProfile section, e.g.
[SPAS03] or the Web Service Modeling Ontology (WSMO) DL Capability descrip-
tions, e.g. [KLP+04]. We, however, are dealing with the discovery of workflows, and
the difference between Web services and workflows puts additional requirements on
the discovery task. We discussed how for discovery purposes a workflow can be seen
as a service, and in this sense the existing work on service discovery applies. We also
know from Chapter 3 that users want to look for workflows both as simple services and
as composite services (service compositions). For simple service discovery, the exist-
ing work on discovering ServiceProfile or Capability descriptions can be used, which
do not include control flow information. For composite service discovery queries over
service flow and data flow, control flow information would be required. Even though
detailed control flow information clearly is present in OWL-S and WSMO ontologies
through the ServiceModel and Orchestration/Choreography descriptions, respectively,
these parts of the ontologies are neither intended nor (to our knowledge) currently used

CHAPTER 5. WORKFLOW DISCOVERY TECHNIQUES 142

to support discovery. In this section we consider how OWL DL-based discovery works
in the presence of simple control flow information. Before we start our discussion, we
need a brief introduction to Description Logics.

5.6.2 Description Logics in a nutshell

Description Logics are expressive subsets of First-Order Logic, which lend themselves
particularly well for describing domain knowledge. As explained in [BCM+03], pages
16-20, a Description Logic knowledge base is typically comprised by two components
a T-Box and an A-Box. The T-Box contains general information about the problem do-
main (intensional knowledge, “classes”), whereas the A-Box contains knowledge that
is specific to the individuals of the domain (assertional or extensional knowledge, “in-
stances”). Intensional knowledge is usually thought not to change, whereas extensional
knowledge is usually thought to be contingent, or dependent on a single set of circum-
stances, and therefore subject to occasional or even constant change. The basic task
in constructing a T-Box terminology is classification, which amounts to placing a new
concept expression in the proper place in a taxonomic hierarchy of concepts. Clas-
sification can be accomplished by verifying the subsumption relation between each
defined concept in the hierarchy and the new concept expression. The basic reason-
ing task in an A-Box is instance checking, which verifies whether a given individual
belongs to a specified concept. This is accomplished by verifying the subsumption
relation between each defined concept in the (T-Box) hierarchy and the new concept
expression. For further information, we refer to [BCM+03], Chapters 1 to 3, which
provide an excellent introduction to Description Logics and associated reasoning.

The resulting classifications are lattices, not trees, as a description can have mul-
tiple parents. For example, in bioinformatics, a protein might be classified by what it
transports, what it catalyses, the process it participates in; and where it is located. A
service may be classified by its location, its cost, its inputs, its function and so on.

5.6.3 Knowledge acquisition bottleneck

When deploying an ontology-based solution, one needs to take the knowledge acqui-
sition bottleneck seriously. Here we make two points specific to workflows.

CHAPTER 5. WORKFLOW DISCOVERY TECHNIQUES 143

Service classification is context specific

The same service used in different workflows will be linked to a different range of
service classes depending on the task it performs in the workflow context. When an-
notating services in workflows and workflow fragments, it is not just a matter of how
concrete services were once classified based on previous workflows; a service can be
used for different tasks. Each use represents a different task description. One example
is the multiple uses for the BLAST service. BLAST (Basic Local Alignment Search
Tool) is a popular bioinformatics Web service for finding regions of genome sequence
similarity (see www.ebi.ac.uk/Tools/webservices). A BLAST service can
also be used as a plagiarism detection tool, by feeding it plain texts instead of DNA
sequences. Hence one BLAST service potentially brings about multiple task descrip-
tions.

Workflow semantics availability

In one sense, it is not hard to get a representation in OWL DL of a workflow: we
can describe all its services as being of generic class Service and derive the appro-
priate links from the workflow specification. Obtaining a more useful representation
is harder. Though progress has been made with tools like Feta [LAWG05], (even
lightweight) semantic service annotations are proving hard to produce. In practice,
bioinformaticians in myGrid resort to a combination of manual search, text search,
and semantic search when discovering Web services, and build workflows that con-
tain services with semantic descriptions and services without semantic descriptions.
Workflows can come without any, or at best with incomplete, Web semantics, for the
following reasons.

1. No matter how low the threshold is to providing annotation, if there is a thresh-
old, some services and workflows will not get annotated.

2. Building workflows can take months, even years. One may want to keep other
people, for example in a research group, informed of new, even incomplete,
workflows and publish early results.

3. Workflows sometimes contain sensitive information related to Intellectual Prop-
erty or refer to services that are unavailable outside an organization. In this case
not all of the information in the workflow will be described for the outside world.
The open world semantics of OWL DL allow to query for incomplete workflows.

www.ebi.ac.uk/Tools/webservices�

CHAPTER 5. WORKFLOW DISCOVERY TECHNIQUES 144

5.6.4 Logical document view

We start by extending an existing T-Box service ontology [WSG+03] and then use this
representation to answer a set of queries over a type of workflow fragments common
in bioinformatics. We conclude by discussing the need for handling more complicated
fragments and a hybrid approach to repurposing. Since our approach has not been
implemented in a prototype, it cannot be evaluated based the human benchmark of the
next chapter. To provide a simple proof of concept, we have instead selected seven
queries designed to illustrate the strengths and weaknesses of the approach. We shall
refer to the queries throughout the text.

Example queries

Q1 Given a data point, service, fragment or workflow, where has this item been used
before?

Q2 Show the common data, services, service graphs or data graphs between two
fragments or workflows.

Q3 Given a set of data points, services, or fragments, have these been connected up
in an existing base of workflows? If not, what are the closest available alterna-
tives for doing so? How do these alternatives rank?

Q4 As more and more workflows become available, fragments are reused and repur-
posed in a variety of workflows. How can one systematically keep track of these
interrelationships?

Q5 Which workflows are work in progress?
Q6 Show the differences between two workflow versions.
Q7 Show the evolution of a workflow over time.

Representing workflows / workflow fragments

Consider the Williams-Beuren syndrome gene annotation pipeline in Figure 5.1. Sim-
ilar to many workflows we find in bioinformatics, this workflow is a pipeline that fans
out: one starts out with a limited number of inputs, and ends up with many more out-
puts. We want to represent such a tree-like workflow in a DL. We assume that the
T-Box collects generic descriptions of workflows which, given their generality, hardly
change, while the A-Box provides a place for scientists and workflow developers to
add new workflows.

CHAPTER 5. WORKFLOW DISCOVERY TECHNIQUES 145

Figure 5.1: Williams-Beuren syndrome gene annotation pipeline.

T-Box Services are the basic building blocks of a workflow. We adopt the defini-
tion of a service used in the myGrid ontology [WSG+03]. This ontology, originally
in DAML+OIL and now in OWL Lite, contains 550 concepts and 69 roles (proper-
ties of concepts) and describes bioinformatics service classes. A myGridService

service class (shown in what follows as Service) usesOrProduces one or more
BioDomainConcept. Optionally, it includes a performsTask role relationship,
as well as other, bioinformatics specific, roles (not shown).

In terms of notation, “A v̇ B” indicates that B subsumes A. “ .
=” represents

equality and “u” represents the Boolean AND operator. See [BCM+03] for further
details.

hasInput v̇ usesOrProduces

hasOutput v̇ usesOrProduces

Service
.
= BioProcess u ∃usesOrProduces.BioDomainConcept

We define workflows as entities that contain at least one service, by means of the
transitive has part role hp.

WF
.
= Process u ∃hp.Service

Adding an ordering between services in a workflow description is made possible through
the has direct successor role hds.

The following is a partial T-Box description for the sequence analyzer SeqAna

CHAPTER 5. WORKFLOW DISCOVERY TECHNIQUES 146

fragment combining three services of Figure 5.1.

SyntaxTranslator v̇ Mediator Mediator v̇ Service

RepeatMasker v̇ RemRedDNA RemRedDNA v̇ Service

BLAST v̇ SeqSimSearch SeqSimSearch v̇ Service

BLASTn v̇ BLAST

Biologists often precede BLASTing a genetic sequence (i.e. running it through a
BLAST service) with a RepeatMasker service to remove redundant structures and ob-
tain a non-redundant sequence. We acknowledge the importance of this service com-
bination for the biology domain by introducing a BLASTNRSeq workflow fragment
in the T-Box. In general, concept expressions describing workflows are called abstract

workflows.

BLASTNRSeq
.
= WF u ∃hp.(RepeatMasker u ∃hds.BLAST)

SeqAna
.
= WF u ∃hp.(BLASTNRSeq u ∃hds.Mediator)

The use of the hds and hp roles allows to derive that, for instance, SeqAna is sub-
sumed by

myFragment
.
= ∃hp.(RemRedDNA u ∃hds.BLAST)

We also wish to be able to deduce when one service (or piece of data) succeeds another
even when a few services are in between (Q3). Introducing a role hierarchy has the
desired effect. We define the has successor role hs to be transitive and a super role of
hds by adding hds v̇ hs and Trans(hs) to the role hierarchy.

Moreover, it would be logical to expect that if a service, Service 1, is followed by a
workflow fragment of which Service 2 is the first service, then Service 1 is succeeded
by Service 2. To model such a derivation in a clean way, we would need to say that
any has successor relationship between A and B followed by a has part relationship
between B and C implies a has successor between A and C. This type of derivation
can be achieved by means of a complex role inclusion axiom [HS03]. Unfortunately
the role composition construct is unavailable in OWL 1.0 (in the OWL Lite and the
OWL DL variant). See [DS04] for an overview of the constructs available in OWL.2

We approximate the desired inference by making the has part role hp as a sub role of
has successor hs. It remains to be seen in how far this approximation yields undesired

2It looks like the role composition construct will be available in the next version of OWL, version
1.1, in some part due to the use case provided here.

CHAPTER 5. WORKFLOW DISCOVERY TECHNIQUES 147

s3:SyntaxTranslator

w2:WF w3:WF

hp hp

hp

hds

s1:RepeatMasker

w1:WF

hp
hp

hp

hds

hp

s2:BLASTn

Figure 5.2: Contents of the A-Box without the hs roles, hp transitivity and inverses

effects.
Finally, the has direct precursor, has precursor, and is part of roles are modelled

as the respective inverse roles of hds, hs and hp.

A-Box Service instances and concrete workflows in the A-Box instantiate the ser-
vice classes and abstract workflows from the T-Box. As a guiding principle, abstract
workflows are used for structuring the ontology, whereas concrete workflows are used
for query answering. Concrete workflows are used for the annotation of snippets of
working code, and this is what the user is interested in.

Below we give an example that shows part of an A-Box containing three concrete
workflows and three service instances, based on the T-Box defined earlier. We omit the
hs role assertions, hp transitivity and the inverse role assertions. Figure 5.2 represents
the same information graphically.

Concept assertions

w1 :WF w2 :WF w3 :WF

s1 :RepeatMasker s2 :BLASTn s3 :SyntaxTranslator

Role assertions

〈w1, s1〉 :hp 〈w1, s2〉 :hp 〈w1, s3〉 :hp

〈w2, s1〉 :hp 〈w2, s2〉 :hp

〈w3, w2〉 :hp 〈w1, s3〉 :hp

〈s1, s2〉 :hds 〈s2, s3〉 :hds

CHAPTER 5. WORKFLOW DISCOVERY TECHNIQUES 148

Querying workflows and workflow fragments

With the T-Box and A-Box described so far, we now demonstrate some of the queries
(relating to Q1, Q2 and Q3) that can be answered based on the representation devel-
oped in the previous section. We have used Racer3 to support retrieval of fragments and
follow the syntax of [CGL98]. We then consider the querying of incomplete workflows
(Q4), as well as inexact fragment retrieval (Q3).

We rely on a Prolog-style syntax to write the conjunctive queries. “,” represents
Boolean AND, whereas “:-” represents an implication from the right-hand side of the
formula to the left hand side.

Example queries for workflow fragments

Find the workflows that analyse a non-redundant sequence for similarity and then

manipulate the results. Both queries are acyclic conjunctive. They return w1 and w3.

(w) : − WF(w), hp(w, w′), BLASTNRSeq(w′), hds(w′, s), Mediator(s)

(w) : − hp(w, s), hp(w, y), hds(s, t), hds(t, y),

RemRedDNA(s), SeqSimSearch(t), Mediator(y)

Which workflows contain a service that does similarity search and a service that re-

moves redundant information in DNA (the first query returns w1, w2 and w3)? Which

workflows connect these 2 services (the next query yields w1, w2 and w3)?

(w) : − WF(w), hp(w, s), hp(w, t), SeqSimSearch(s), RemRedDNA(t)

(w) : − hp(w, s), hp(w, t), hs(s, t), RemRedDNA(s), SeqSimSearch(t)

Note the use of the hs role to indicate that intermediate links between s and t can
be present. Neither Racer, the Manchester and Stanford OWL-QL implementations,4

nor Pellet of U. Maryland5 support the retrieval of the trace between role relations, i.e.

to return the intermediate role relations linking two intermediate services (based on
the hs and hp roles). Postprocessing the returned role assertions with a shortest path
algorithm, in order to find the desired trace in a workflow, solves the issue.

3Web site: www.sts.tu-harburg.de/˜r.f.moeller/racer/
4Web sites: www.cs.man.ac.uk/˜glimmbx/ and onto.stanford.edu:8080/owql/FrontEnd
5Web site: www.mindswap.org/2003/pellet/index.shtml

CHAPTER 5. WORKFLOW DISCOVERY TECHNIQUES 149

Querying for incomplete workflows

The open world semantics of description logics allows to query for incomplete work-
flows (Q5). DLs allows to leave information implicit in a knowledge base – e.g. one
can specify that at least one instance of a certain class exist, without having to name
that instance.

Suppose that, in the example in Figure 5.1, a developer of a workflow has decided
that a mediator service will be used, but has yet to decide where to put this service
relative to the other services in the workflow. Even though the description is incom-
plete, it would still be of interest to other developers who are interested in the same
type of mediation and thus it is useful to be able to publish and query such incomplete
knowledge.

5.6.5 Ranking

So far, the queries involved the exact retrieval of fragments based on A-Box retrieval.
One would also like to retrieve fragments that are largely relevant to a user (Q3) but
happen to fall outside a strict subsumption relationship, e.g. the structure of two frag-
ments is the same, except there are two services which are not in a subsumption rela-
tionship. A mechanism is needed to measure (dis-)similarity between fragments, cal-
culating for instance how many services are to be moved, removed, added, replaced,
merged or split to relate different fragments. It is key that such a mechanism is able to
provide an explanation of why some fragments would be ranked higher than others.

DL role-based approaches and implementations relying on structural algorithms
have been developed for FL− in [BG98], which uses shared roles and role values for
inexact matching, and in [BG99], which counts shared parent concepts. In [CCC+04]
a structural algorithm based on abduction and contraction is presented for a fragment
of ALC. A tableaux algorithm for abduction and contraction based matching in ALN
is presented in [CNS+04].

FL−, ALN and ALC are relatively inexpressive Description Logics compared
to OWL. Directly applying the above approaches on the workflow ontology and the
myGrid domain ontology has not proven possible, given the expressive constructs used
in the workflow and domain ontology. In particular, for the workflow ontology, we
need at least the combination of role hierarchies (indicated by the letter H in the name
of the logic), role transitivity S, inverse roles I and full existential quantification E . If
we want to be able to formulate questions that include myGrid domain concepts (such

CHAPTER 5. WORKFLOW DISCOVERY TECHNIQUES 150

as descriptions of input and output), nominals O and qualified number restrictions Q
ought to be added.

In case no abduction algorithm for OWL is devised, approximation [BKT02] might
offer a way out by simplifying the ontology in a non trivial way to the level of expres-
sivity the abduction algorithm can handle. Another option is to stay within OWL and
devise query relaxation strategies for a query manager.

Two alternative approaches to handle similarity in DL combine elements from other
paradigms, thereby creating a hybrid formalism. The vector-based approach adopts
normalised vectors and the cosine measure from information retrieval, e.g. [MSST93],
whereas the probability-based approach tries to merge Bayesian inference with DL
reasoning, e.g. [KLP]. The theoretical foundation and practical implications of these
alternative approaches are less well understood. It is unclear how they would provide
sufficient explanation facilities as to why a particular ranking was constructed.

5.6.6 Outlook

Capturing data flow and more complex control flow The current representation
largely ignores data flow. One could introduce data objects that have input and out-
put relationships in the A-Box. For control flow, due to the lack of expressive power
of OWL, we must abstract from the structure of the concrete workflows when they
are described in the T-Box. So far, we only use hds to represent control flow. For
the fragment discovery purposes of scientists, this is probably what one wants to do
anyway: these users are not interested in intricate control flow details. There may be
cases where more complex control mechanisms such as loop, conditionals or concur-
rency constraints need to be modelled. We can easily capture part of a conditional in
the T-Box by introducing e.g. has possible successor roles. With respect to loops, one
cannot define and query for loops in the abstract workflows. One is still able to query
for loops over concrete workflows in the A-Box.

A hybrid approach to repurposing It is clear that, when building workflows, we
are often confronted with various problems that can (and should) be solved “syntacti-
cally” such as versioning support (Q6 and Q7). Moreover, enacting workflows gen-
erates data points which people query for. It seems sensible to represent such objects
not in the A-Box but in a database, as in effect one has generated everything there is to
know about a particular enacted workflow and no extra inferences can be drawn.

CHAPTER 5. WORKFLOW DISCOVERY TECHNIQUES 151

5.7 GUB4WF: Index Terms + Structure

If one regards the service names of a workflow as index terms and keeps the structure
intact, a different technique becomes possible, which is not dependent on annotations
in formal Knowledge Representation languages.

5.7.1 Knowledge acquisition bottleneck

A graph matching technique can be applied on workflows without a need for additional
annotation if it assumes only the existence of the workflow specification.

We chose a graph as the data structure and an algorithm for graph sub-isomorphism
detection as the basis of the matching algorithm. Our choice of a graph as the data
structure for capturing a workflow is motivated as follows. Firstly, multiple scientific
workflow environments have adopted a graphical representation to present workflows
to end users. For these environments, the choice of a graph as the vehicle for match-
making potentially makes explaining the discovery process and its results more intu-
itive. Taverna workflows, too, are visualized as graphs. Taverna’s graphs are directed
and acyclic - this follows from the semantics of Taverna’s Scufl language, which cor-
respond to a lambda calculus with a list monad [Tur06]. Secondly, a graph is a very
expressive data structure. The benefits and drawbacks of different exact and inexact
graph retrieval algorithms and heuristics are well understood. Finally, graphs provide a
theoretical underpinning for the Resource Description Framework (RDF), a W3C rec-
ommendation for describing semantic information on the Web. Techniques we adopt
for workflow diagrams based on graphs potentially extend to RDF graphs describing
workflows. Currently, in myGrid over 500 biological Web services are annotated in
RDF(S)6 and the transition path to workflows appears natural.

5.7.2 Logical document view

Graph matchers assume graphs of a certain kind as input; in our case, the graph matcher
works over attribute-less graphs of nodes and directed, attribute-less edges. The con-
tents of a graph impacts the outcome of the matching process. Our generated graphs
include the workflow’s overall input and output as nodes as well as intermediate graph
nodes instantiated with the names of the services connecting the workflow’s input and
output. The graph’s edges are defined as the connections between the services.

6Web site: http://www.mygrid.org.uk/feta/mygrid/descriptions

http://www.mygrid.org.uk/feta/mygrid/descriptions�

CHAPTER 5. WORKFLOW DISCOVERY TECHNIQUES 152

5.7.3 Rankings

To produce results, the graph matcher relies on sub-isomorphism detection (“subgraph
matching”). The technique for graph sub-isomorphism detection we restorted to is
optimized to work over a repository of graphs. The technique was developed and im-
plemented by Messmer and Bunke [MB00]. Standard methods for sub-isomorphism
detection usually work on only two graphs at a time. However, when comparing work-
flows, there is more than one graph in the repository that must be matched with the
input graph. Consequently, it is necessary to apply the subgraph isomorphism algo-
rithm to each pair of repository graph - input graph, resulting in a computation time
that is linearly dependent on the size of the repository. Messmer and Bunke’s ap-
proach is based on a compact representation of the repository graphs that is computed
off-line. The representation is created by decomposing the repository graphs into a
set of subgraphs, where common subgraphs of different graphs are represented only
once. During on-line matching, they are matched exactly once with the input graph,
yielding a technique that is only sub-linearly dependent on the number of the graphs in
the repository [MB00]. As explained below, the optimization is currently unavailable
in our tool, but remains of interest.

The data structure and graph matching algorithm in itself are not sufficient to create
workflow rankings. The translation of a workflow into a graph and the way results
are ranked and presented have a great impact on results. These steps need further
explanation.

Graph Parser

The Parser translates the Scufl specification of all workflows in a form and format
suitable for the graph matcher. Our chosen graph matcher is rather inexpressive and
only accepts attribute-less graphs of nodes and (directed or undirected) attribute-less
edges. The contents of a graph impact the outcome of the graph matching process,
typically as a trade-off between accuracy and performance.

The following steps occur in our translation from a Scufl workflow to a graph:

1. The workflow’s overall inputs and outputs are included as named nodes in the
graph.

2. The intermediate nodes are instantiated with the names of the services connect-
ing the workflow’s input and output, while ignoring all information about inter-
mediary inputs and outputs.

CHAPTER 5. WORKFLOW DISCOVERY TECHNIQUES 153

3. The graph’s edges are defined as the connections between the services.

Therefore, the information that is captured roughly mirrors the type of information
available in the workflow diagram in Fig. 5.1. The colouring which indicates service
type has been lost in translation, though. We also lost the distinction between overall
inputs, overall outputs and services and conflated them into nodes.

Other parsing strategies are possible, for example based on including intermediary
input and output names. The inexpressivity of the graph matcher means we cannot
straightforwardly combine intermediary inputs and outputs with information about the
service’s name. Judging from our corpus, relying solely on intermediary input and
output names would seem careless, given that they often consist of generic terms such
as “value” or “query.”

Graph Matcher

With the workflows turned into graphs, Messmer and Bunke’s graph matcher can be
put to use. The implementation supports efficient matching of a large input graph to
a collection of smaller graphs in the repository. In the context of workflow retrieval,
this corresponds to the case where users would want to retrieve those workflows in the
repository which correspond to a fragment in the user’s workflow, perhaps to find out
which other authors did the same analysis.

The case where one starts out with a small input graph and matches this to a collec-
tion of larger graphs is not implemented by the prototype. Unfortunately, in the case of
workflow matching, the latter case, where one starts out with a small exemplar work-
flow and one would like to compare it against a repository of large, finished workflows,
seems of more practical relevance. Re-implementing the graph matching algorithm to
cater for this scenario is non-trivial, however, and beyond our scope. Instead, we re-
sorted to inverting the matching process by sequentially treating each of the (large)
repository graphs as an input graph to the matcher, and treating the (small) exemplar
workflow as the whole repository. This work around destroys the graph repository op-
timization since it treats the prototype as a standard subgraph matching package which
is invoked as many times as there are workflows in the repository.

HTML Formatter

The results from the Graph Matcher are rendered into an HTML page, which speci-
fies how many nodes are shared between workflows and what their size difference is.

CHAPTER 5. WORKFLOW DISCOVERY TECHNIQUES 154

It also contains links to the workflow specifications. Furthermore, we highlight the
differences between the input workflow (AffyidToBlastxPDB.xml) and the re-
trieved ones. Fig. 5.3 shows the example where the joint use of the Blastx service is
detected by the matcher. The example also illustrates how the graph matcher, based on
our translation, conflates overall inputs and outputs and services. As it cannot not dis-
tinguish between “Blastx” as a service and “Blastx” as a workflow output, the “Blastx”
output is wrongly highlighted in the repository workflow, even though no output with
exactly the string “Blastx” is present in the input workflow.

5.8 Summary

In this chapter we gave an overview of workflow design discovery techniques modelled
to work over data flow workflows that are built with the Taverna workflow editor.
The presented techniques are novel either because (i) the adaptation of an existing
search engine to the workflow discovery problem is new or (ii) because they were
developed from scratch specifically for structural workflow discovery (based on well-
known algorithms from the graph matching and description logic reasoning literature).

In Chapter 6, we will apply these techniques on the benchmarks generated in Chap-
ter 4, in order to evaluate their worth on practical discovery tasks. A discussion of
possibilities for future work is covered in the future work chapter.

CHAPTER 5. WORKFLOW DISCOVERY TECHNIQUES 155

Figure 5.3: Visualization of overlap between the input workflow and one in the repos-
itory.

Chapter 6

Evaluation of discovery techniques on
benchmarks

We evaluate the performance of the techniques by comparing their solutions on dis-
covery tasks with the solutions provided by bioinformaticians when participating in
the user experiments of Chapter 4. Several choices were made as part of the evaluation
method. After making these explicit, we present the results of the evaluation.

6.1 Evaluation method

We made several pragmatic choices in performing the evaluation. Ideally, one would
measure the performance of all techniques by comparing them against the solutions
of participants on all performed workflow discovery tasks for those user experiments
which yielded statistically coherent results. In practice, we evaluated only particular
combinations of techniques and data sets. Table 6.1 lists these combinations. The
techniques are either (i) fully evaluated against the assessments of all participants on
all tasks in a data set, (ii) evaluated partially against the assessments of all participants
for the case of an individual task, or (iii) not evaluated on a particular data set. The
lack of full evaluation is due to three reasons:

1. Unavailability of annotation. If a set of workflows as used in a user experiment
is not annotated, a semantics-based technique cannot be tested on that set. The
18 workflows of benchmark 3 are semantically annotated only to a degree: only
its constituent services and not structural connections between its services. This
allowed to still use the JMFeta tool on this set. Given the lack of suitable anno-
tation, OWL4WF was evaluated in the previous chapter based on a set of sample

156

CHAPTER 6. EVALUATION OF DISCOVERY TECHNIQUES ON BENCHMARKS157

Data set Discovery
task

Google
API

Woogle4WF GUB4WF JMFeta OWL4WF

Experiment 1 Similarity -
cross author

Case

Benchmark 1 Similarity -
personal

Full Full

Benchmark 2 Similarity -
cross author

Case Full Full

Benchmark 3 Similarity and
complement -
cross author

Case

None Similarity -
personal and
cross author

Case

Table 6.1: Summary of evaluation method for automated discovery techniques

queries.

2. Prediction of performance. During the evaluation of techniques, we would en-
counter fundamental reasons why a particular technique would perform badly
beyond a particular discovery task. For reasons of time constraints, in these
cases, we decided to stop exploring its performance further instead of confirm-
ing whether this predicted poor performance actually holds across all available
data sets.

3. Processing of benchmark results. With respect to benchmark 3, we were un-
able to process results in time in order to use them in conjunction with the
Woogle4WF tool.

In addition, in one case we rely on a statistically unconvincing data set. The poten-
tial and limitations for producing workflow rankings based on the GUB4WF tool are
partially demonstrated based on data from user experiment 1.

With these considerations in mind, we partially evaluate the following discovery
tasks:

1. Similarity-based personal and cross-author discovery.

2. Complementarity-based discovery.

CHAPTER 6. EVALUATION OF DISCOVERY TECHNIQUES ON BENCHMARKS158

6.2 Similarity-based personal and cross-author discov-
ery

We use the data from experiment 1 and benchmarks 1-3 to explore the performance of
the tools on similarity-based personal and cross-author discovery.

6.2.1 Results based on data from Experiment 1

Given the lack of a robust benchmark based on experiment 1 (see page 108), no generic
claims can be made as to how useful any tool is for end users. As a simple showcase,
instead we aim to have the GUB4WF tool replicate the averaged workflow similar-
ity ranking of Table 4.3 on page 109 with respect to the exemplar used in the user
experiment.

The averaged similarity ranking, in decreasing order, with respect to the exemplar
is: (i) Workflow 1; (ii) Workflow 4; (iii) Workflow 3; (iv) Workflow 2; and (v) Work-
flow 5 (see section 4.2.5 for the workflow diagrams).

Running the GUB4WF Parser on the 89 workflows takes about ten seconds on
a PentiumIV/512MB RAM/WindowsXP machine. The matching process itself takes
about five seconds. The graph size ranged from three nodes to 36 nodes.

Different ranking strategies can be adopted. In terms of ranking the graphs re-
trieved by the graph matcher, we have experimented with three factors: the similarity
in terms of overall input, overall output and internal services shared between work-
flows (i.e. nodes shared between graphs), the difference in workflow size (number of
nodes) and a simple lexical transformation (uncapitalization on the nodes). We show
the impact of three different strategies for the above showcase:

1. Shared nodes, string matching. The Graph Matcher always returns the biggest
subgraph found during matching with the input. We use the size of this subgraph
as a measure to rank the collection of matched workflows. Without manipulating
the names of the nodes (workflow input, output and services), this matching
strategy returns 9 results, and of the list to be ranked contains workflows 1 and
2 (listings are provided on-line).

2. Shared nodes, lowercase string matching. When adapting the above strategy to
make all node name assignments lower case during the Parser process, another
14 workflows show up in the matching results, including workflow 4. The list
now includes workflows 1, 2 and 4, but wrongly ordered.

CHAPTER 6. EVALUATION OF DISCOVERY TECHNIQUES ON BENCHMARKS159

Figure 6.1: Output for ranking strategy 3 with respect to the exemplar workflow.

CHAPTER 6. EVALUATION OF DISCOVERY TECHNIQUES ON BENCHMARKS160

3. Shared nodes, lowercase string matching, size. Introducing a measure that com-
pares the size of the exemplar workflow to the comparison workflow ranks work-
flows 1, 2 and 4 in the right way. We show the results of this strategy in Fig. 6.1.
Workflows are ordered in the first instance by the number of nodes they share
with the exemplar, and, in those cases where two workflows in the list have the
same number, they are ordered by the size of the difference between the two
workflows.

Strategy 3 still fails to retrieve workflows 3 and 5. Upon closer inspection, it be-
comes clear that inexact string matching of the service names, or information retrieval
techniques in general, could offer a solution for these cases. Another solution would
be matching based on classes of similar services, which opens up the door for semantic
annotation.

6.2.2 Results based on Benchmarks 1 and 2

The Google API, Woogle4WF and GUB4WF are selectively used on benchmarks 1
and 2 (Table 6.1).

Google4WF

The combination of the Google API based wrapper and the proprietary ranking mech-
anism used by Google on the raw XML files in which the Taverna workflows are cap-
tured yields poor results for Benchmark 2. This makes clear that the approach would
not work for the other benchmarks either. A rendering of a workflow into a Web page
friendly format, including linkage of workflow Web pages to Web pages representing
constituent services, is likely to improve rankings.

GUB4WF and Woogle4WF

Testing the GUB4WF graph matcher and the Woogle4WF text clustering technique
on benchmarks 1 and 2 (see experiments 3 (page 114) and 4 (page 116), respectively)
yields more interesting results.

In addition to the raw performance of these two techniques, we also consider the
“combination hypothesis” as an additional technique – the idea, coined by IBM, that
further advances in search technology will be based on a cross-disciplinary approach.
In our context, we consider the impact of combining the results of the graph matching

CHAPTER 6. EVALUATION OF DISCOVERY TECHNIQUES ON BENCHMARKS161

Task Measure Top x
results

Graph
matcher

Text
cluster-

ing

Intersection Union

Versioning Precision 25 65 34 51 44
Recall 25 50 24 17 57

Precision 10 65 35 90 48
Recall 10 21 9 7 25

Precision 5 70 40 83 56
Recall 5 12 6 2 16

Cross Precision 11 - 60 - -
author Recall 11 - 74 - -

discovery Precision 5 - 50 - -
Recall 5 - 36 - -

Table 6.2: Average recall and precision for versioning and cross-author discovery on
Benchmarks 1 and 2.

and text clustering techniques. We identify two options: (i) use the intersection of
results (when both techniques agree) or (ii) use the union of results.

Table 6.2 summarises the performance of the 2+2 techniques. The first band of
figures shows the average precision and recall for performing the 2 personal discovery,
i.e. versioning tasks. The second band of figures gives the average precision and recall
for cross-author discovery for the 11 input workflows (12 minus the one dummy). It
shows performance with respect to the top x results returned by a given technique
(values in percentage; higher is better).

The figures bring out the trade-off between precision and recall, in that an increase
in precision means a decrease in recall. The only exception to this is the performance of
the text clustering, which might be explained by the relative small set of 21 workflows
over which the clustering algorithm operated.

The different classes of discovery techniques come with their own strengths and
weaknesses. The text clustering technique performs well on cross-author discovery,
but does poorly when it comes to versioning. The graph matcher does well in com-
parison on the versioning task, but when applying the graph matcher for cross-author
discovery, no results are returned in any of the cases. As a result, the application of the
combination hypothesis turns out to be sensible only in the case of versioning, where
both techniques yield results. The intersection technique has good precision on the ver-
sioning task compared to the other techniques, but displays a drop in recall, whereas

CHAPTER 6. EVALUATION OF DISCOVERY TECHNIQUES ON BENCHMARKS162

the union technique displays a converse pattern. We conclude that the combination hy-
pothesis idea does not improve the quality of search results overall in our experiment;
one has to choose between either bettering precision or bettering recall.

We observe that the figures leave much room for improvement. This suggests that
changes in the approach are needed, be it in the form of a more refined graph matcher,
better natural language descriptions of the workflows or indeed through semantic an-
notation. Comparing the results of the techniques and the experts, we found multi-
ple matches which were only identified by the experts. These missed matches relied
mainly on expert background knowledge of the biology and bioinformatics behind the
services. One such example is illustrated in Figure 6.2. These workflows represent
different outcomes but share the same semantic output type (shown as a boxed ontol-
ogy concept from the myGrid service ontology). WF1 produces an output of SwissProt
ids from the getSwissprotIds Web service, while WF2 outputs these at the end of the
workflow. This implicit link is important because the goal of the author of WF2 could
be to extend her workflow to accomplish the same as WF1, namely to retrieve Gene
Ontology IDs.

6.3 Complementarity-based discovery

Benchmark 3 (page 117) is the only one to capture the performance of human experts
on tasks that require assessment of workflow complementarity.

None of the tools we discussed in Chapter 5 are built to support complementarity.
In collaboration with José M. Blázquez of Universidad Carlos 3 de Madrid in Spain, we
tested what the JMFeta tool, not built for this purpose, would achieve. We established
that the JMFeta tool does not predict the correct answer on the simple example exercise
designed for the participants of user experiment 5 (see Appendix C). To solve the
task, only overall inputs and outputs of all workflow were used. This confirms that
knowledge of the internals of the workflow would be needed. The Woogle4WF tool
in that respect may do slightly better on the same task given that it also indexes the
constituent services of a workflow; future experimentation would need to confirm this.

6.4 Summary and discussion

All the data set based evaluations provide evidence that the discovery techniques under
consideration are highly task specific. This suggests that, to support the full range of

CHAPTER 6. EVALUATION OF DISCOVERY TECHNIQUES ON BENCHMARKS163

Figure 6.2: Background knowledge in workflows.

CHAPTER 6. EVALUATION OF DISCOVERY TECHNIQUES ON BENCHMARKS164

discovery tasks, a suite of techniques will be needed. The results for the techniques on
the different discovery tasks are summarised as follows:

Similarity-based personal discovery. The use of a graph matcher in GUB4WF to rep-
resent workflow structure proved valuable to support personal discovery (GUB4WF
+ Benchmark1; GUB4WF + Experiment1). Conversely, the lack of a struc-
tural matching component in the Woogle4WF tool meant it was unable to de-
tect any structural relations between workflows which resulted in poor precision
(Woogle4WF + Benchmark1).

Similarity-based cross-author discovery. The use of a text clustering component in
Woogle4WF proved valuable to support cross-author discovery (Woogle4WF
+ Benchmark2; Woogle4WF + Benchmark3). Conversely, the lack of a text
clustering component in GUB4WF meant it was unable to detect results during
cross-author discovery (GUB4WF + Benchmark2; GUB4WF + Experiment1).
Finally, the combination of the Google API based wrapper and the proprietary
ranking mechanism used by Google for unprocessed workflows yielded poor
results for cross-author discovery (Google API + Benchmark2).

Complementarity-based discovery. The performance of applying light-weight seman-
tic and text-based similarity-based techniques on complementarity-based tasks
was poor (Woogle4WF + Benchmark3; JMFeta + Benchmark3). The results
from the limited case study based on the JMFeta tool (JMFeta + Benchmark3)
suggest that the indiscriminate use of lightweight semantics offers little benefit

over the indiscriminate use of the Woogle4WF text-based technique.

In the next chapter of the thesis, we will revisit the fundamental assumption made
about scientific workflows in the beginning of the thesis. We assumed that such work-
flows are implemented using only one kind of model of computation. The chapter will
lift this restriction and will investigate the impact this has on workflow re-use.

Chapter 7

Re-use of Models of Computation

Scientific workflow environments typically offer support for the design, enactment
and provenance recording of computational experiments. In Chapter 2’s discussion of
workflow systems, we observed that support for re-use and discovery is mostly lacking.

Thus far, in our discussion of re-use and discovery, we have assumed that the model
of computation (MoC), or the formal abstraction of computational execution, is fixed.
We envisage a future where computational experiments are modeled based on different
models of computation, however.

When the assumption of a single model of computation is removed, the question
of workflow re-use becomes more complex. Can models of computation be combined
in all possible combinations? Are some more re-usable than others? This chapter
investigates how workflow re-use is affected when multiple MoCs are available.

7.1 Problem statement

Chapter 2 described several application scenarios in e-science for composing work-
flows based on diverse models of computation (see page 29). To date, little is known
about how models of computation are joined.

Despite the conceptual appeal of the listed scenarios, few compositions of models
of computation have made it into e-science practice. There are two main reasons for
this. First, workflow tools have not generally supported heterogeneous MoCs, so to
achieve it, workflow designers would need to combine distinct frameworks. The ensu-
ing software configuration complexity and fragility, the diversity of modeling syntaxes,
and the conceptual complexity of the resulting models are all daunting. “Tool integra-
tion” (the combination of distinct modeling and workflow systems) is usually not the

165

CHAPTER 7. RE-USE OF MODELS OF COMPUTATION 166

best way to accomplish our objectives. Second, using heterogeneous MoCs requires
e-scientists to think of their applications in a different way, and little exists in the way
of training materials, guidelines, or examples. The Ptolemy project has had as its ob-
jective all along the first of these two problems [BHLM94] [EJL+03]. This chapter
addresses the second concern.

7.2 Related work

Regarding the second concern, determining which MoC combination is the most ap-
propriate for a particular scenario is potentially a difficult exercise. Designers need
to understand nuanced distinctions between the MoCs. This task is complicated by
the lack of a standardized representation to specify the assumptions and requirements
of MoCs for composition. Prior work has offered formalisms for describing MoCs
[MB07] [HB07] [BBS06], and comparing them [LSV98] but less for their composi-
tion. In addition, workflow systems typically do not provide a formal characterization
of the used MoC(-s). Often, MoC behavior is buried inside legacy software compo-
nents (e.g. ODE solvers in optimized Fortran libraries). This makes it harder to model
and execute interactions between MoCs. Finally, a systematic study of MoC composi-
tions is lacking. Knowledge about how models of computation are joined is scattered
across communities.

Regarding this latter point, within the scientific workflow system community, trans-
formations of scientific data are commonly modeled in dataflows [GRD+07]. Several
systems are experimenting with mixing dataflows with control flows. The authors of
[BLNC06] use Kepler [LAB+05] to model control-flow intensive subtasks inside of
data flows. Similar to the approach of [BLNC06], Taverna [OGA+05] treats policies
for individual services (e.g. retry strategies) differently to the overall (lamda calculus
based) data flows [Tur06]. At a higher level, both Kepler and Taverna enable com-
putational steering of data flows, as does Inforsense [CGWG07]. Within the business
workflow systems community, work exists on how Petri nets are to be combined with
other formalisms [vdA05]. MoC compositions are also investigated in the hybrid sys-
tems community. Hybrid systems are dynamic systems that exhibit both continuous
and discrete dynamic behavior. Compositions of models of computation in this case
involve the modeling of time. Within the software engineering community, UML Stat-
echarts, rooted in the work by Harel [Har87], combine two MoCs, finite state machines
(FSMs) and synchronous/reactive (SR) models [BB91]. This has been generalized to

CHAPTER 7. RE-USE OF MODELS OF COMPUTATION 167

show that FSMs can be usefully combined with a number of concurrent MoCs, result-
ing in the notion of modal models [GLL99]. In the embedded systems community, a
number of researchers have explored mixed MoCs for software [JS05] and hardware
[PS04] system designs.

The approach we assume in this chapter constructs workflows as actor-oriented
models. Our notion of actor-oriented modeling is related to the work of Agha [Agh86]
and others. The term actor was introduced by Hewitt to describe the concept of au-
tonomous reasoning agents [Hew77]. The term evolved through the work of Agha and
others to describe a formalized model of concurrency [Agh86]. Agha’s actors each
have an independent thread of control and communicate via asynchronous message
passing. We have further developed the term to embrace a larger family of models of
concurrency that are often more constrained than general message passing. Our actors
are still conceptually concurrent, but unlike Agha’s actors, they need not have their
own thread of control. Moreover, although communication is still through some form
of message passing, it need not be strictly asynchronous.

Actor-oriented modeling has been around for some time, and is in widespread use
through such programs as Simulink, from The Mathworks, LabVIEW, from National
Instruments, and many others. It is gaining broad legitimacy in software engineering
through the efforts of OMG in UML-2, for example. Many research projects are based
on some form of actor-oriented modeling, but the Kepler/Ptolemy II approach is unique
in the breadth of exploration of semantic alternatives and in its ability to combine
distinctly different actor-oriented MoCs.

7.3 Workflows and Hierarchy

We situate our discussion in the context of the Kepler [LAB+05] and Ptolemy II
[EJL+03] environments. In contrast to Taverna [OGA+05], Kepler is a scientific work-
flow environment that allows scientists to choose from multiple MoCs. Kepler is based
on the Ptolemy II simulation environment. Kepler and Ptolemy II also allow for work-
flows that contain multiple MoCs. This chapter explains how MoCs are combined in
Kepler and Ptolemy II and analyses which combinations of MoCs are currently possi-
ble and useful. It demonstrates the approach by combining MoCs involving dataflow
and finite state machines. The resulting classification should be relevant to other work-
flow environments wishing to combine multiple MoCs.

Kepler/Ptolemy II comes with a wide range of MoCs, which are implemented as so

CHAPTER 7. RE-USE OF MODELS OF COMPUTATION 168

called directors. We first introduce the notion of hierarchy as the key concept for mix-
ing MoCs in a workflows. Next we provide an overview of MoCs in Kepler/Ptolemy
II. For a scientific workflow developer, determining which MoC combinations are le-
gal is non trivial. This leads us to establish MoC compatibility, based on the notion of
actor abstract semantics and presents a classification of MoCs combinations. Finally,
we discuss the validity of the approach and demonstrate successful and unsuccessful
combinations of dataflow and finite state machines.

Ptolemy II is a Java-based environment for heterogeneous modeling, simulation,
and design of concurrent systems. Ptolemy II forms the core of Kepler [LAB+05],
an environment for building scientific workflows. The focus of Ptolemy II is to build
models based on the composition of processing components called actors [Agh86].
Actors are encapsulations of parameterised actions performed on input tokens to pro-
duce output tokens. Inputs and outputs are communicated through ports within the
actors. They provide the common abstraction used to wrap different types of software
components, including sub-workflows, Web and Grid services.

The interaction between the actors is defined by a Model of Computation. The
MoC specifies the communication semantics among ports and the flow of control and
data among actors. Directors are responsible for implementing particular MoCs, and
thus define the “orchestration semantics” for workflows. By selecting the director,
one selects the scheduling and execution semantics of a workflow. Many actors can
work with several directors, adapting their behaviors to match the semantics of the
director [LAB+05]. The models of computation implemented in Ptolemy as directors
are described in detail in Vol. 3 of [BLL+05]. A subset of them, including dataflow,
time and event dependent directors, is available in Kepler. Key to mixing MoCs in a
workflow is the notion of hierarchical abstraction. Figure 7.1 shows a Kepler chemistry
workflow using the PN director, which implements a process networks MoC [SAB06].
This workflow contains a composite actor (a.k.a. sub-workflow) named Babel. The
implementation of Babel actor is another workflow that contains another director, the
SDF director, which implements a synchronous dataflow MoC. This example mixes
two MoCs in a single, hierarchical workflow.

In Ptolemy II/Kepler, hierarchy can serve either of two roles. First, it can be sim-
ply an organisational tool in building workflows, permitting a workflow designer to
aggregate portions of a workflow and create conceptual abstractions. In this usage,
the composite actor does not contain a director, and is called a transparent composite

actor. The hierarchy has no semantic consequences; it is just a syntactic device. A

CHAPTER 7. RE-USE OF MODELS OF COMPUTATION 169

Figure 7.1: A Kepler workflow from chemistry combining the PN and SDF director.

second use of hierarchy is to use a workflow to define an actor. The Babel example is
of this type. The fact that it has a director makes it function within the top level work-
flow exactly as if it were an atomic actor. A composite actor that contains a director is
called an opaque composite actor, because its internal structure is neither visible nor
relevant to the outside director.

For an opaque composite actor to function externally as if it were an ordinary actor,
the director must be able to execute the inside workflow in a manner that emulates an
actor. We examine below what that means, but before we can do that, we explain a few
of the MoCs in enough detail that they can serve as illustrative examples.

7.4 Models of Computation in Ptolemy II and Kepler

One of the main objectives of the Ptolemy Project has been the exploration of models
of computation. For this reason, many distinct directors have been created by various
researchers, some realizing fairly mature and well-understood models of computation,
and some that are much more experimental. Kepler has adopted Ptolemy’s rich MoC
architecture and focused principally on a few of the more mature ones, described here.

Process Networks (PN). In PN, each actor executes in a Java thread, and all actors
execute concurrently. An actor can read input data encapsulated in tokens from input
ports, and write data encapsulated in tokens to output ports. Normally, when it reads
from an input port, the read blocks until an input token is available. Writes do not
block. The PN director includes sophisticated scheduling policies to ensure that buffers

CHAPTER 7. RE-USE OF MODELS OF COMPUTATION 170

for tokens remain bounded, and also detects deadlock, which is where all actors are
blocked attempting to read data. See [KM77] and [PGM97]. Most of the scientific
workflows (composite actors) built with Kepler to date have been based on PN.

Dataflow (DDF and SDF). In dataflow MoCs, instead of having a thread associ-
ated with each actor, the director “fires” actors when input tokens are available to them.
We discuss two variants of dataflow here, dynamic dataflow (DDF) and synchronous
dataflow (SDF). In the case of DDF, the director dynamically decides which actor to
fire next, and hence constructs the firing schedule dynamically at run time. In the case
of SDF, the director uses static information about the actor to construct a schedule of
firings before the workflow is executed, and then repeatedly executes the schedule.
SDF is very efficient in that very little decision making is made at run time. PN is
semantically a superset of DDF, in that the repeated firings of an actor in DDF can be
viewed as (or even implemented as) a thread. Every DDF workflow can be executed
using a PN director. DDF in turn is a superset of SDF, in that every SDF workflow
can be executed identically with a DDF director. In SDF, a fixed number of tokens are
consumed and produced in each firing. The token consumption and production rates
allow for the computation of a fixed schedule. In SDF, deadlock and boundedness of
communication buffers are decidable. As a consequence, SDF is well suited to code
generation (the synthesis of a stand-alone program that executes independently of the
workflow framework) [GZL07]. With DDF, actors need not have a fixed token pro-
duction or consumption rate, the schedule is determined at runtime. In DDF, deadlock
and boundedness are not decidable. In a DDF model, an actor has a set of firing rules
(patterns) and the actor is fired if one of the firing rules forms a prefix of unconsumed
tokens at the actor’s input ports.

Continuous Time (CT). In CT, the communication between actors is (conceptually)
via continuous-time signals (signals defined everywhere on a time line). The CT direc-
tor includes a numerical solver for ordinary differential equations (ODEs). A typical
actor used in CT is an Integrator, whose output is the integral from zero to the current
time of the input signal. The CT director advances time in discrete steps that are small
enough to ensure accurate approximations to “true” continuous-time behavior.

Discrete Events (DE). In DE, tokens communicated between actors are associated
with a time stamp, a numerical value that is interpreted as the time at which the com-
munication occurs. The DE director “fires” an actor when one or more of its input ports
has the “oldest” (least time stamp) token among all the unconsumed tokens, or when
the actor has requested a firing at a time stamp that is less than that of all unconsumed

CHAPTER 7. RE-USE OF MODELS OF COMPUTATION 171

tokens and all other pending requests for firing. When the actor fires, it consumes the
input tokens, if any, and possibly produces output tokens. It may also request of the
director a firing at some future time stamp.

Synchronous/Reactive (SR). In SR, every actor is (conceptually) fired on every
“tick” of a global “clock.” On each firing, an actor may observe input values and
assert output values, but in any tick, even if it is repeatedly fired, if the inputs remain
the same, then the asserted outputs should remain the same. The SR director fires all
actors in every tick of the global clock repeatedly until all signals at all ports are de-
fined. A signal is defined either if it has a token as its value or if it has been asserted to
be “absent” (to have no token).

Finite State Machines (FSM) and Modal Models. An FSM composite actor is very
different from the above. The components in an FSM composite actor are not actors,
but rather are states. The FSM director starts with an initial state. If that state has a
refinement, then the FSM director “fires” that refinement. It then evaluates guards on
all outgoing transitions, and if a guard evaluates to true, then it takes the transition,
making the destination state of the transition the new current state. A state machine
where the states have refinements is called a Modal Model. A Modal Model is an
opaque composite actor containing an FSM, each state of which may contain an opaque
composite actor. In a modal model, the refinement of the current state defines the
current behavior of the state machine. The refinement of a state need not have the
same type of director as the workflow containing the modal model. When FSM is
combined hierarchically with CT, the resulting models are called hybrid systems.

There are many other MoCs implemented in Ptolemy II, but the above set is suffi-
cient to illustrate our key points. Akin to choosing between programming languages to
tackle a problem, often different directors can be chosen to model a given phenomenon.
A suitable director does not impose unnecessary constraints, and at the same time is
constrained enough to result in useful derived properties (such as efficient execution or
deadlock detection). The misinformed use of directors also leads to actors that cannot
be embedded in others, as explained in the next section.

7.5 Composing Models of Computation

MoC composition is being explored in multiple scientific workflow systems. Examples
other than Kepler include the Taverna and Inforsense systems. Taverna 2 allows com-
putational steering of its data flows and within those data flows it uses FSM semantics

CHAPTER 7. RE-USE OF MODELS OF COMPUTATION 172

to manage policies for individual services [Oin07]. Inforsense too combine FSMs with
dataflows [CGWG07]. Bar modal models however, MoC compositions have not been
well treated in earlier research. Although prior work has offered formalisms for de-
scribing MoCs, e.g., [MB07] [HB07] and comparing them, e.g., [LSV98], a study of
MoC compositions is lacking. To address the void, we develop a classification of valid
MoC combinations in Kepler/Ptolemy II.

In the Kepler environment, opaque composite actors can be put into workflows with
a different type of director, thereby combining different models of computation in one
workflow. In the workflow in Figure 7.1, the Babel actor is part of a network of actors
orchestrated by the PN director. The Babel actor internally uses an SDF director. In
the example, SDF is nested inside PN, which is a valid combination, as we will explain
below. Nesting PN inside of SDF would have been invalid in most cases. The choice
of director determines whether a given actor can be put on the inside or outside of other
actors.

To determine which combinations are possible, we need to know two things about
a director:

1. What properties it assumes of the actors under its control, and
2. What properties it exports via the opaque composite actor in which it is placed.
If a director’s exported properties match those assumed by another director, then it

can be used within that other director. Otherwise, it cannot. In the example of Figure
7.1, the SDF director exports properties that match those assumed by the PN director,
and hence SDF can be used inside PN. The properties in question can be formulated in
terms of actor abstract semantics and director abstractions of time.

7.5.1 Actor Abstract Semantics

All models of computation in Kepler and Ptolemy II share a common abstraction that
we call the actor abstract semantics. Actors and directors are instances of Java classes
that implement the Executable interface, which defines action methods. The action
methods include two distinct initialisation methods:
1. preinitialize(): invoked prior to any static analysis performed on the workflow
(such as scheduling, type inference, checking for deadlock, etc.).
2. initialize(): invoked to initialise an actor or director to its initial conditions. This
is invoked after all static analysis has been performed, but it can also be invoked during
execution to reinitialise an actor.

The action methods also include three distinct execution methods that are invoked

CHAPTER 7. RE-USE OF MODELS OF COMPUTATION 173

in sequence repeatedly during an execution of the workflow:
3. prefire(): invoked to check whether an actor is ready to fire (for example, an actor
may return false if there are not enough input data tokens).
4. fire(): In this method, the actor should read input tokens from input ports and write
tokens to output ports, but it should not change its state. That is, if the fire() method is
invoked repeatedly with the same input tokens, then the resulting output tokens should
be the same.
5. postfire(): In this method, the actor can read input tokens and update its state.

Finally, there is a finalisation method:
6. wrapup(): invoked for each actor just prior to finishing execution of a workflow.

All of the methods are required to be finite (they must eventually return).
The method definitions specify a contract, but not all actors obey this contract. Any

actor that strictly conforms to this contract is said to be domain polymorphic, and the
actor may be used by any director that operates on actors (which is all the directors
above except FSM, which operates on states).
Actors that do not obey the contract are more specialised, and may only work with
specific directors. They are not domain polymorphic (strictly obeying the actor abstract
semantics) and come in two flavours. The first flavour obeys a looser version of the
abstract semantics where the fire() method provides no assurance that the state of the
actor is unchanged. The second is still looser in that it that also provides no assurance
that any of these methods is finite. Based on these three levels of conformance to actor
abstract semantics, we can now classify the directors.

7.5.2 Abstract semantics assumed by a director of the actors under
its control

The PN director only assumes the loosest of these abstract semantics. It does not
require that any method be finite because it invokes all of these methods, in order,
in a thread that belongs entirely to the actor. If an actor chooses to run forever in
the preinitialize() method, that does not create any problems for the director. The
director will let it run. Dataflow and DE1 directors require that actors conform with
the loose actor semantics, where all methods are finite. But they do not require that
actors leave the state unchanged in the fire() method. CT and SR require that actors
obey the strictest form of the semantics. The director iteratively fires actors until some

1A variant of DE is described in [9] that requires and exports strict semantics, but that is not what is
implemented in the current version of the software (version 6.0 of Ptolemy II).

CHAPTER 7. RE-USE OF MODELS OF COMPUTATION 174

condition is satisfied. The strict actor semantics ensures that the answers will always
be the same given the same inputs. FSM requires loose actor semantics. A firing of an
FSM in Ptolemy II consists of a firing of the refinement of the current state (if there is
one), followed by evaluation of the guards and a state transition. Clearly, the firing of
the refinement must be finite for this to be useful.

7.5.3 Abstract semantics exported by a director via the actor in
which it is placed

A director also implements the Executable interface. If a director conforms to the
strict actor semantics, then an opaque composite actor containing that director also
conforms to the contract. Such an actor can be used safely within any workflow. In the
current version of Ptolemy II (version 6.0), only the SR director conforms to the strict
actor semantics, although in principle CT and DE can be made to conform. Currently
these and the dataflow directors conform to the looser abstract semantics, but still
guarantee that all methods return after finite time. PN only conforms to the loosest
version, providing no guarantees about methods ever returning. The FSM director
exports whatever the state refinements export.

7.5.4 Abstractions of time

Some of the directors (notably CT and DE) explicitly manage a notion of the advance-
ment of time. An actor, when it fires, can ask the director for “current time,” and actors
can expect that time will advance monotonically between firings. Other directors (no-
tably the dataflow directors and SR) are agnostic about time. They will pass requests
for current time up the hierarchy to the next director above them. If they are at the
top level, then by default, they do not advance time, and hence time does not progress
beyond a starting point (typically 0.0). However, the SDF and SR directors have a
parameter that can be used to increment time between iterations of the model, thus
providing a model of discrete, regular advancement of time. Some directors (notably
PN), have no notion of time and no notion of an iteration, and hence cannot meaning-
fully advance time.

This model of time, along with the abstract semantics, imposes some constraints
on the combinations of directors that can be used. Specifically, some directors require
that time advances (CT and DE). These directors cannot be put inside a director that
does not advance time (PN).

CHAPTER 7. RE-USE OF MODELS OF COMPUTATION 175

Table 7.1: Rules for hierarchically mixing directors in Kepler and Ptolemy II.

7.5.5 Director compatibility

We classify directors according to the following criteria:
1. They require that the actors they control are strict, looser, or loosest, depending
on whether they must conform to the strictest, looser, or loosest form of abstract se-
mantics.
2. They similarly export strict, looser, or loosest. Ideally, any director should export
the same version of the contract it assumes or a stricter version, but this is not the case
in the current version of Ptolemy II.
3. In addition, they either require time to advance, or do not require it.

The current status of the directors is given in Table 7.1. The rules applied to de-
termine director compatibility are: (i) exported abstract semantics should be stricter
than or equal to required abstract semantics and (ii) a director that requires that time
advances should only be put inside a director that advances time. The table is on-line
and will evolve (see www.ptolemy.org/heterogeneousMoCs).

7.6 Composing PN, Dataflow and FSM Directors

A key question may arise at this point. If actors can be made domain polymorphic by
conforming to the strict actor semantics, then why not design all directors to conform?
In some cases, the semantics of the MoC precludes this. In other cases, it would simply
be too costly. We examine some of these cases.

PN. The PN director is apparently the least restrictive in the actors it can manage,

www.ptolemy.org/heterogeneousMoCs�

CHAPTER 7. RE-USE OF MODELS OF COMPUTATION 176

but also the least useful in an opaque composite actor. The reason for this is very funda-
mental. If the PN director were to define a finite fire() method, what should that method
do? Each of the actors under its control is executing in its own thread of control. How
much execution should be performed? One possible answer is “as little as possible,”
but this would result in nondeterminate execution. If two actors have threads that are
able to perform computation, which should be allowed to perform computation? The
only other obvious answer is “as much as possible.” This can be made determinate,
but typical PN workflows can execute forever if given the opportunity. Hence, this
yields an infinite execution. PN is sufficiently expressive that determining whether this
execution is infinite is equivalent to solving the famous halting problem in computa-
tion, and hence is undecidable. This property of PN explains why it is challenging to
introduce a model of time to PN. Specifically, timed variants of PN that have appeared
in the literature allow time to advance when the model deadlocks. But whether the
model deadlocks is undecidable, and typical models never deadlock. Thus, the loosest
abstract semantics comes at a serious price, an inability to introduce a model of time.

For example, the workflow of Figure 7.1 with PN on the outside would be hard to
re-use inside others. It follows that, when a workflow has potential to be re-used inside
others, PN should be avoided and, if possible, replaced by a more reusable director.
Moreover, models that require time to advance cannot be used within PN.

DDF. DDF is as expressive as PN, and hence potentially suffers from the same lim-
itation. However, DDF has an advantage. It assumes that all actors under its control
have finite firings. Thus, it is relatively easy for the designer of a workflow to specify
how many firings of the component actors constitute a single firing of the enclosing
opaque composite actor. The DDF director assumes a simple default if these numbers
are not given by the workflow designer: one firing of a DDF opaque composite actor
constitutes at most one firing of each component actor. The actor is fired if possible,
and not fired if not, given the available input data. This yields a simple, finite, and
determinate notion of a finite firing for the director to export. This enables the intro-
duction of a model of time. Time can advance between firings of the director. If the
DDF director is used at the top level, the amount of the time advance would need to
be given by a parameter. If it is inside a timed domain like DE, then the amount of the
time advance can be specified by the environment.

SDF. SDF is still simpler in that it is not as expressive as PN, and there is a simple
unique finite firing that is natural and easy to define. However, for both DDF and SDF,
it is difficult to define a fire() of an opaque composite actor that does not update the state

CHAPTER 7. RE-USE OF MODELS OF COMPUTATION 177

of the workflow because data values stored on buffers change during the firing of the
component actors. In order for SDF and DDF to export the strict actor semantics, they
would have to backtrack or restore the state of these buffers on repeated invocations of
the fire() method.

FSM. A particularly interesting case is FSM and modal models. Modal models
always use opaque composite actors as state refinements, and these must at a minimum
have finite firings to be useful (given the semantics of an FSM in Ptolemy II discussed
before). Hence, it does not make sense to use PN inside the refinement of a state. But
any other of the directors described above can be used in a Modal Model.

Figure 7.2 illustrates the differences with a small example that shows how DDF
and modal models can be embedded in SDF. The model starts with a Ramp actor that
produces tokens starting at 0 and then increasing by 1. The signal is then distributed to
a DDF opaque composite actor and to a modal model, both of which randomly change
the gain of the signal. The DDF portion uses conditional routing of the tokens to route
each token through one of two actors that either multiplies the value by 1 or by -1. In
a similar fashion, the modal model has two refinements that either multiplies the value
by 1 or by -1. The output is then plotted; see Figure 7.3. The refinements of the modal
model are SDF models. Thus, the modal model refinements export SDF semantics and
could be embedded inside PN if PN was at the top level. Swapping the DDF director
with PN makes the workflow fail because PN cannot be used inside the outermost
SDF. The reason is that PN conforms to the loosest execution semantics and makes no
guarantee about ever returning. This example is available on-line for exploration via
the above mentioned Web site.

7.7 Composing SR, DE, and CT Directors

SR and CT both require and export the strict actor semantics. DE has the potential
to do so, although the current software implementation is looser. This fact creates an
interesting suite of modeling capabilities for timed systems, that when combined with
FSM, is extremely useful. In particular, it is possible for SR, DE, CT, and FSM to
be combined hierarchically in any order. More interestingly, as shown in [LZ07], DE
can be thought of as a generalisation of SR, and CT as a generalization of DE. Each
generalisation adds expressiveness at the expense of efficiency. There are also subtle
stylistic differences between these directors that make them all useful, despite being
generalisations of one another. Details and examples are given in [LZ07].

CHAPTER 7. RE-USE OF MODELS OF COMPUTATION 178

Figure 7.2: A simple example with DDF and FSM directors inside an SDF director.

Figure 7.3: The output of the example MoC composition.

CHAPTER 7. RE-USE OF MODELS OF COMPUTATION 179

7.8 Summary and discussion.

There are scenarios in e-science that rely on composing models of composition. Work-
flow re-use in the presence of multiple models of computation is non trivial. Based on
the notion of hierarchy and actor abstract semantics, we developed a classification of
models of computation available in the workflow environments Kepler and Ptolemy II.
The classification shows the compositions that are possible and useful. It turns out that
some models of computation are more re-usable than others. Notwithstanding several
restrictions, many compositions are possible. Time-based simulations can be mixed
with dataflow and finite state machines can be combined with almost anything.

Our exploration of compositions of models of computation should be relevant for
scientific workflow systems wishing to add multiple models of computations to their
modelling capability.

The analysis is also relevant to help predict the behaviour of workflow systems
which implement different models of computation and are combined to run integrated
experiments. The work raises interesting questions on what is Kepler/Ptolemy specific
and how one could extend the approach to formulate the abstract semantics of any
workflow engine. For example, what is the impact of using the actor paradigm? If
all workflow systems could be described in terms of their abstract semantics, a table
detailing how multiple workflow systems are to be combined becomes an option. This
is highly relevant for workflow sharing, execution and interoperation platforms such
as www.myExperiment.org where multiple workflow engines run concurrently.

www.myExperiment.org�

Chapter 8

Conclusions

The goal of this thesis is to investigate workflow re-use and discovery in science. To
achieve this goal we investigated the following four research questions:

Q1 What requirements should be fulfilled for workflow re-use and discovery in sci-
ence to occur?

Q2 How do scientists re-use and discover workflows?

Q3 Can automated discovery techniques support workflow re-use and discovery?

Q4 How does having multiple models of computation in a workflow affect workflow
re-use?

8.1 Conclusions and Contributions

This section provides an overview of our conclusions and contributions in terms of the
four research questions. The overall conclusion of the work is that scientific workflow
re-use is a novel problem with its own set of requirements (see Section 8.1.1) which
are partially addressed by automated workflow discovery techniques. We found that
it is possible to capture how one class of scientists, bioinformaticians, approach the
re-use and discovery of data flow oriented workflows (Section 8.1.2). This outcome
provided a benchmark enabling the evaluation of workflow discovery techniques in the
bioinformatics domain, to positive effect (discussed in Section 8.1.3). Finally, when
considering scientific domains other than bioinformatics, we observed that scientific
problems are modelled in multiple models of computation. We analysed the impact on

180

CHAPTER 8. CONCLUSIONS 181

workflow re-use of having workflows with multiple models of computation (Section
8.1.4).

8.1.1 Requirements for workflow re-use and discovery in science

The concept of a workflow is becoming commonplace in large-scale science. Chapter
2 provided an overview of the scientific workflow landscape by introducing require-
ments from different application domains and by contrasting different workflow system
environments. Multiple domains have found that a data flow model of computation is
the right paradigm to model computational analyses in. In the thesis, we took the same
view and adopted a formal definition of a workflow as a data flow.

With the rise in available scientific workflows comes the potential for their re-use.
Workflow re-use is a subclass of software re-use, which is a well-researched yet tena-
cious problem in software engineering. To clarify the specifics of the problem in the
science context, we elicited requirements from scientists and developers of workflow
systems in science.

Requirements for workflow re-use

Chapter 2 highlighted several cases of workflow re-use in distinct scientific domains,
including bioinformatics, earth sciences and ecology. Based on the results of three user
surveys in Chapter 2, we claim that workflow re-use in science only happens when the
following three categories of requirements are met:

The availability of re-usable workflows. A sharing infrastructure should be in place to
make workflows available. Such workflows would need to be re-usable. Work-
flow re-usability is affected by the choice of model of computation (see Section
8.1.4), workflow language, abstractions used in the workflow environment sys-
tem, the use of data models and the use of distributed autonomous services.

A community open to workflow re-use. Sharing attitude, re-use skillset and re-use
motivation drive the dynamics of the workflow re-use cycle. Different commu-
nities are marked by different dynamics.

Effective and efficient workflow discovery. Determining the relevance of a workflow
to a given problem is challenging. Being able to process the available number of
workflows, having enough quality workflow documentation to assess relevance

CHAPTER 8. CONCLUSIONS 182

and an effective ranking of potential solutions are key requirements for finding
relevant workflows.

Requirements for workflow discovery

Effective and efficient workflow discovery is a prerequisite for workflow re-use. Work-
flow discovery occurs at different times in a workflow’s lifecycle: (i) while the work-
flow is still being designed, (ii) post design, as a finished, concrete workflow, (iii)
post design, as a finished yet abstract template which still needs to be completed dy-
namically during enactment, (iv) during enactment, including intermediary results and
(v) post enactment, including results. We focussed on discovery of finished, concrete
workflow. We elicited specific requirements from scientists and developers in Chapter
3. A number of discovery needs emerged, which lead us to the following characteriza-
tion of workflow discovery.

A definition of workflow discovery tasks

To characterise the different discovery scenarios, workflow discovery tasks were iden-
tified, differentiating on three main axes:

Supporting re-use versus repurposing. Concrete workflow discovery is a sub-task
of both workflow re-use and repurposing. When supporting re-use, workflow
discovery shows similarities to traditional service discovery. When supporting
repurposing however, we claim that workflow discovery is dissimilar to service
discovery. In this case it concerns “composition-oriented discovery,” which sits
in between service discovery and service composition.

User query context. The provided user input to a workflow discovery problem varies
from the workflow a user is currently working on, a textual statement of the
workflow one wants, a stated research hypothesis to a document with the results
of a brainstorming session.

Similarity versus complementary. Both when used to support re-use or repurposing,
discovery tasks involve establishing how workflows are similar or complemen-
tary to the user query context.

This led to a formal definition of workflow discovery tasks. We defined the dis-
covery tasks formally for the case of querying workflows by example. In a query by

CHAPTER 8. CONCLUSIONS 183

example approach to discovering workflows, one queries for workflows “by example,”
taking in an existing workflow representation in order to find others. A query by exam-
ple approach is feasible for any user query context as long the user input can be turned
into a workflow-like representation.

The discovery tasks were formalised by relying on two novel types of workflow

conditions:

Workflow similarity conditions. They define similarity between two workflows’ con-
stituent services and their data links.

Workflow complementarity conditions. They define complementarity between two
workflows’ services and tree branches.

The similarity conditions are relevant when discovering workflows that are similar
to the user query input. This is the case when users are (i) simply re-using work-
flows and (ii) during repurposing, when they are looking to make workflow replace-
ments. The complementarity conditions are relevant when discovering workflows that
are complementary to the user query input. This is the case during repurposing when
users are (i) looking to make workflows extensions and (ii) looking to make insertions.
Combinations of both types of metrics are relevant when overlaps between matching
workflows are considered.

8.1.2 Capturing workflow re-use and discovery by scientists

In the controlled environment of a series of user experiments, Chapter 4 explored how
one class of scientists, bioinformaticians, do workflow re-use and discovery. The fol-
lowing findings were obtained.

Workflow re-use and discovery requirements confirmed

The relative impact of several of the earlier posited requirements on re-use and dis-

covery were tested. Table 8.1 summarises the outcomes. We altered the following
parameters between the experiments:

The discovery task expected of participants. The discovery task involved either find-
ing similar workflows or complementary workflows. In the last experiment, we
also recorded how participants edited the workflows found.

CHAPTER 8. CONCLUSIONS 184

The relation of the participant with respect to workflow authorship. She is either dis-
covering her own workflow, re-using one by a collaborator or one by an external
party.

Participant motivation to complete the exercises. This ranged ranged from low to high
in the experiments, depending on the experimental setup.

The expertise of participants. Low expertise means participants had almost no expe-
rience with bioinformatics. Medium means their main background is in another
field but they understand basic bioinformatics notions. High means they are ac-
tive in bioinformatics research.

The quality and amount of workflow information available per workflow. Low quality
and amount means only a workflow’s diagram is shown with the names given by
the original author. High quality and amount means a professional curator added
natural language text explanations and semantic concepts to the workflow and
its constituent services.

The outcome of each experiment was judged to be positive only when the results
from the exercises showed a level of agreement between participants and were con-
firmed by a bioinformatician as being sensible. The experiments revealed the follow-
ing:

• Bioinformaticians are capable of all types of workflow discovery we considered,
when the conditions are right.

• The commonsense expectation is that participant familiarity with the workflow
author, participant motivation and participant expertise correlate positively with
valid answers to discovery tasks. This expectation was confirmed in all experi-
ments.

• Lots of quality workflow documentation is no requirement to achieve good re-
sults when it comes to discovery of one’s own workflows or workflows by col-
laborators, as shown by experiments 3 and 4.

• Experiment 5 showed that the combination of motivation, expertise and quality
metadata enables discovery from external parties. Contrasting this finding with
the outcome of experiment 2 where participant expertise was medium suggests
that either the motivation factor or the quality documentation factor could be the

CHAPTER 8. CONCLUSIONS 185

Exp. Discovery
task

Relationship
with

original
workflow

author

Motivation Expertise Documentation
quality and

amount

Outcome

1 Find
similar

External
parties

Low Low Low Negative

2 Find
similar

External
parties

Low Medium Low Negative

3 Find
similar

Original
author

High High Low Positive

4 Find
similar

Collaborators High High Low Positive

5 Find and
edit

similar
and

comple-
mentary

Collaborators
and external

parties

High High High Positive

Table 8.1: Summary of user experiments into workflow discovery.

deciding one. Taking into account that the motivation in experiments 1 and 2
was affected substantially by the lack of documention, we concluded that docu-

mentation plays a crucial role either indirectly (to drive motivation) or directly
(to inform the discovery process).

A better understanding of workflow re-use and discovery behaviour

Experiments 1 and 5 were designed to create an understanding of the behaviour bioin-
formaticians exhibit during workflow re-use and discovery. Experiment 1 formulated
a range of plausible hypotheses to uncover patterns of searching and matching bioin-
formaticians use to establish workflow similarity in general. How do they rank work-
flows? What criteria are used and in which combination? However, it turned out the
task as presented to inexperienced bioinformaticians was too difficult and no conclu-
sive results could be drawn.

Experiment 5 also had the ambition to model bioinformatician behaviour, yet fo-
cussed less on the notion of the similarity and more on how the overall re-use process

is performed, in particular the assessment of relevance of potential workflow candidate

CHAPTER 8. CONCLUSIONS 186

Benchmark Experiment Number
of partici-

pants

Behaviour
captured

Number
of assess-

ments

Participant
agreement

(Kappa value)
1 3 2 Similarity

assessments
145 N/A

2 4 2 Similarity
assessments

456 Very good
(0.678)

3 5 24 Relevance
assessments

1848 Very good
(0.666)

4 5 24 Editing Unprocessed Unprocessed

Table 8.2: Summary of human benchmarks for workflow re-use

solutions and their subsequent editing. It presented specific re-use cases to experienced
bioinformaticians.

The same study showed that relevance assessment and editing are done in two dis-

tinct phases. First, participants scanned the whole population of available workflows.
After this, editing was done on the workflows marked as relevant.

It also documented which sources of information are used in which phase. For
both phases, the workflow diagram was the first and most used point of recourse for
finding information, despite its low detail and ambiguity. This finding underlines the
power of using a visual medium. Textual workflow and service inputs and outputs were
also used eagerly in both phases, but less so than the diagram. The overall workflow
description and workflow name were deemed useful for relevance assessment only.

A suite of benchmarks for workflow re-use and discovery

The work of participants translates into a documented set of decisions made during
the workflow re-use process. The three user experiments which had positive outcomes
contribute four benchmarks with different characteristics. They are available from
www.myexperiment.org/benchmarks.

Benchmark 1 collects similarity assessments made by a workflow author about
pairs of her own workflows. In Benchmark 2, a collaborator made similarity assess-
ments on those same workflows. Benchmarks 3 and 4 rely on the re-use tasks solved by
participants in user experiment 5. Benchmark 3 contains the assessments made regard-
ing the relevance of a set of workflows to solve the re-use task in question. Benchmark
4 captures the next step in solving the task by collecting the edit operations participants

www.myexperiment.org/benchmarks�

CHAPTER 8. CONCLUSIONS 187

undertook to solve it. Due to time constraints, these edit operations have not been en-
tered into electronic format yet and their statistical analysis has not been performed.

All benchmarks were created by participants who felt confident while creating
them. For benchmarks 2 and 3, they also agreed strongly on the assessments made,
as shown by the Kappa statistic for inter-rater agreement. Even though a high level of
agreement was reached, agreement was never perfect. For the case of benchmark 3,
the disagreement could be measured in terms of correctness of answers. Contrasting
relevance assessments with the correct solution, participants on average were right in
73% to 91% of cases, depending on the scheme used to assess a given answer. Analysis
of the data uncovered the following main sources of disagreement: (i) documentation
incompleteness or ambiguity, particularly involving data types, (ii) assumptions made
about the required generality of a solution and (iii) assumptions made about the admis-
sibility of additional, external “shim” or glue services to create a solution.

8.1.3 Supporting workflow discovery with automated techniques

The user experiments showed that workflow re-use and discovery is difficult for bioin-
formaticians. To support them, in Chapter 5 we considered the use of a range of auto-
mated discovery techniques. We evaluated the worth of the techniques by comparing
their results with those of the participants on tasks presented during the user experi-
ments.

Automated discovery techniques

The investigated techniques were built to support one type of workflow discovery task.
They differ mainly on the type of information they exploit.

1) Type of workflow discovery tasks supported. All the techniques considered work
based on similarity-based matching of workflows. None were designed explicitly to
support complementarity-based matching between workflows.

2) Type of workflow documentation exploited. Given the expense of obtaining high
quality workflow documentation, we considered techniques which operate on different
levels of documentation. Table 8.3 organises the techniques by the formalism they rely
on to query workflows and by the level of detail at which workflows are queried. Text
refers to techniques using natural language descriptions. RDF refers to techniques us-
ing light-weight semantic descriptions. OWL refers to techniques using rich semantic
descriptions. Other resources can equally be described in natural language, RDF or

CHAPTER 8. CONCLUSIONS 188

Formalism Technique not
using workflow

structure

Technique using
workflow
structure

Text Google API,
Woogle4WF

GUB4WF

RDF JMFeta
OWL OWL4WF

Table 8.3: Summary of the considered automated discovery techniques.

OWL. The fact that workflows are involved means the notion of structure is central –
where possible, the relationship between constituting services needs to be retained.

Using natural language descriptions. Three techniques were explored to exploit tex-
tual information in workflows. Firstly, a simple wrapper to the Google search
engine API was built to investigate Google’s performance on unprocessed work-
flow descriptions. Secondly, we adopted the existing Woogle service discovery
tool for text-based service discovery (unrelated to Google) and adapted it into the
Woogle4WF tool which translates a workflow to look like a service. Thirdly, to
enable querying the internal structure of a workflow in conjunction with textual
descriptions of its constituent services, we developed GUB4WF, a tool exploit-
ing an existing graph matching library for sub-isomorphism detection.

Using light-weight semantic descriptions. We adopted the existing JMFeta tool for
semantic service discovery. The tool relies on a similarity metric and annota-
tions of services made based on the RDF(S) subset of the Resource Description
Framework (RDF) language. It allows to query for similar workflows by provid-
ing it with workflow annotations that look like regular service annotations.

Using rich semantic descriptions. We analysed the possibilities and limitations of
using the description logic based Web Ontology Language, OWL, for querying
the structure of data flows and proposed a novel workflow ontology. The combi-
nation of using selected example queries over the developed workflow ontology
with the Racer description logic reasoner was dubbed OWL4WF.

Evaluation of automated discovery techniques

We evaluated the performance of the techniques by comparing their solutions on re-use
tasks with the solutions provided by bioinformaticians. Several choices were made as

CHAPTER 8. CONCLUSIONS 189

Data set Discovery
task

Google
API

Woogle4WF GUB4WF JMFeta OWL4WF

Experiment 1 Similarity -
cross author

Case

Benchmark 1 Similarity -
personal

Full Full

Benchmark 2 Similarity -
cross author

Case Full Full

Benchmark 3 Similarity and
complement -
cross author

Case

None Similarity -
personal and
cross author

Case

Table 8.4: Summary of evaluation method for automated discovery techniques

part of the evaluation method. After recalling these, we summarise the major findings
of Chapter 6.

1) Evaluation method choices. We made several pragmatic choices in performing

the evaluation. Ideally, one would measure the performance of all techniques by com-
paring them against the solutions of participants on all performed workflow discovery
tasks for those user experiments which yielded statistically coherent results. In prac-
tice, we evaluated only particular combinations of techniques and data sets. Table 8.4
lists these combinations. Although the table looks sparse, it covers a wide range of
techniques and tasks.

The techniques were either (i) fully evaluated against the assessments of all partic-
ipants on all tasks in a data set, (ii) evaluated partially against the assessments of all
participants for the case of an individual task, or (iii) not evaluated on a particular data
set. The lack of full evaluation was due to three reasons: unavailability of annotation,
predicted performance and time constraints in processing benchmark results.

In addition, in one case we relied on a statistically unconvincing data set. The
potential and limitations for producing workflow rankings based on the GUB4WF tool
were partially demonstrated based on data from user experiment 1.

2) Findings. Keeping these considerations in mind, we reached the following over-
all conclusions:

Finding 1. Workflow discovery techniques are task specific. All the data set based
evaluations provide evidence that the discovery techniques under consideration are

CHAPTER 8. CONCLUSIONS 190

highly task specific. This suggests that, to support the full range of discovery tasks,

a suite of techniques will be needed. The results for the techniques on the different
discovery tasks are summarised as follows:

Similarity-based personal discovery. The use of a graph matcher in GUB4WF to rep-
resent workflow structure proved valuable to support personal discovery (GUB4WF
+ Benchmark1; GUB4WF + Experiment1). Conversely, the lack of a struc-
tural matching component in the Woogle4WF tool meant it was unable to de-
tect any structural relations between workflows which resulted in poor precision
(Woogle4WF + Benchmark1).

Similarity-based cross-author discovery. The use of a text clustering component in
Woogle4WF proved valuable to support cross-author discovery (Woogle4WF
+ Benchmark2; Woogle4WF + Benchmark3). Conversely, the lack of a text
clustering component in GUB4WF meant it was unable to detect results during
cross-author discovery (GUB4WF + Benchmark2; GUB4WF + Experiment1).
Finally, the combination of the Google API based wrapper and the proprietary
ranking mechanism used by Google for unprocessed workflows yielded poor
results for cross-author discovery (Google API + Benchmark2).

Complementarity-based discovery. The performance of applying light-weight seman-
tic and text-based similarity-based techniques on complementarity-based tasks
was poor (Woogle4WF + Benchmark3; JMFeta + Benchmark3). The results
from the limited case study based on the JMFeta tool (JMFeta + Benchmark3)
suggest that the indiscriminate use of lightweight semantics offers little benefit

over the indiscriminate use of the Woogle4WF text-based technique.

Finding 2. OWL reasoning enables a unique feature for workflow discovery but

extensions to the underlying technology would make it even more useful.

The open world semantics of OWL allow to describe and query incomplete work-

flows. This is a useful feature because (i) building workflows can take a very
long time (ii) workflows can come annotated incompletely and (iii) workflows
sometimes contain sensitive information and not all of the information in the
workflow will be described for the outside world.

Extensions are needed to the description logic machinery underlying OWL. In par-
ticular, the querying of workflow fragments provides a use case for including

CHAPTER 8. CONCLUSIONS 191

role composition capability to the current version (1.0). In addition, the limited

understanding and expressivity of current similarity-based retrieval techniques

affects the usefulness of OWL to organise and retrieve similar workflow struc-

tures.

8.1.4 Impact of multiple models of computation on workflow re-
use

Our focus thus far has been on workflow re-use and discovery in the context of a sin-
gle class of models of computation, namely data flows. However, in science, multiple
models of computation are in use to model analyses. In this context, we studied the im-
pact that having multiple models of computation has on workflow re-use. We collected
use cases for workflows re-using workflows with alternative models of computation
and analysed when these re-use cases are valid computationally.

There exist use cases for combining multiple models of computation inside a single

workflow. Chapter 2 introduced a series of scenarios whereby the ability to combine
heterogeneous models of computation within one workflow was crucial to modelling
an experiment.

Workflow re-use in the presence of heterogeneous models of computation is often

feasible. Section 8.1.1 stated that models of computation were one deciding factor
for determining whether workflows were re-usable. Chapter 7 investigated the precise
conditions under which workflows are re-usable in the presence of multiple models
of computation. Notwithstanding several restrictions, we found that in many cases
workflows using alternative models of computation can be re-used and embedded in a
hierarchical manner. Time-based simulations can be mixed with data flows; discrete
dynamics can be mixed with continuous dynamics; and finite state machines can be
combined with almost anything.

Relevance to e-science middleware projects. The resulting classification should be
relevant for scientific workflow systems wishing to add multiple models of computa-
tions to their modelling capability. The analysis is also relevant to help predict the
behaviour of workflow systems which implement different models of computation and
are combined to run integrated experiments.

CHAPTER 8. CONCLUSIONS 192

8.2 Future work

The work in this thesis can be expanded in several directions. We revisit each of the
research questions and set out possible avenues for future research. Future work with
respect to the impact of multiple models of computation on workflow re-use is treated
inside the requirements section.

8.2.1 Requirements for workflow re-use and discovery in science

Re-use across multiple workflow environments. This thesis focused on workflow re-use
in the context of a single workflow environment. There is no standardised workflow
language in the science community and it is unclear whether one will emerge. There is
also a desire to maximize workflow re-use potential. The question whether to support
workflow re-use across workflow languages is an issue for sharing environments like
myExperiment.org where workflows stemming from different workflow systems are
shared. What can be meaningfully re-used across workflow systems? Suppose I find a
workflow created in an environment that is not my own - what can I meaningfully do
with it? One option would be to integrate it in my workflow while executing it based on
its original workflow engine. Examples of such integration exist between the Taverna
[OGA+05] and VL-e [ZBB+06] environments. In case I would like to make changes
to it, however, could I import it as is into my environment, or import only parts of it,
or only its data products?

An ambitious research goal is to investigate workflow interoperability at the lan-
guage level. Since the mid nineties, the Workflow Management Coalition (WfMC)
has tried to address the lack of a standard between workflow systems in the business
world. To stimulate interoperability between vendors, it has defined the Workflow
Reference Model, shown in Figure 8.1, that outlines five key interfaces that a work-
flow management system must have. Since we are interested in workflow discovery,
Interface 1 for defining the business process is highly relevant. It includes two aspects:
a process definition expression language and a programmatic interface to transfer the
process definition to/from the workflow management system. To define Interface 1, the
XML Process Definition Language XPDL was introduced, a process design format for
storing the visual diagram and process syntax of business process models, as well as
extended product attributes.1 XPDL is not an executable programming language like
BPEL or Scufl, but rather a process design format that literally represents the drawing

1Web site: http://www.wfmc.org/standards/xpdl.htm

http://www.wfmc.org/standards/xpdl.htm�

CHAPTER 8. CONCLUSIONS 193

Figure 8.1: The Workflow Management Coalition Reference Model.

of the process definition. Specifically, it has vector coordinates, including lines and
points that define process flows. As [Wen06] writes, the goal of XPDL is to store and
exchange the process diagram. It allows one workflow design tool to write out the dia-
gram, and another to read the diagram, and for the picture that you see to be as similar
as possible. It does not, however, guarantee the precise execution semantics [Wen06].
We observed that research to identify, categorise and formally describe the different se-
mantics of a workflow is ongoing and limited. Chapter 7 made an initial contribution.
Further work is needed to chart the relationships between models of computations.

Discovery tasks given a variety of models of computation. Given the existence of
multiple models of computation, is a universal representation and a universal set of
requirements for workflow discovery feasible?

Several initiatives have focused on defining a common representation to improve
workflow interoperability. For instance, the aforementioned XPDL was designed to
support interoperability, not discovery. Similarly, the VL-e workflow interoperability
bus proposal [ZBB+06] concentrates on interoperability, not on supporting discovery
of concrete workflows.

The use of different models of computation implies new workflow discovery tasks
and metrics could be defined, different to the ones we defined for data flows in this

CHAPTER 8. CONCLUSIONS 194

thesis. Examples include measuring similarity and complementarity of workflows im-
plemented as Finite State Machines or those implemented in a time-based model of
computation. The representation required to support those tasks will be specific to the
model of computation in question.

We expect however that some discovery tasks will be common across models of
computation and that the representation required to support those tasks will be uni-
versal. For example, all workflows in a Web context will share the notion of a Web
service. Comparing which services are shared and not shared by workflows is a pow-
erful discriminator.

Finally, the possibility to combine workflows with different models of computa-
tion adds further complexity to deciding the level of similarity and complementarity
between workflows.

8.2.2 Capturing workflow re-use and discovery by scientists

Workflow re-use and discovery requirements confirmed

The impact of high motivation and low expertise. In the user experiments, some ambi-
guity remains over the determining factor of certain outcomes (see Table 8.1 on page
185). In particular, it would make sense to measure the performance of participants
who had little expertise with a domain but who were highly motivated. This case re-
flects the case of cross-disciplinary workflow re-use.

Crossing over to other disciplines. It would also make sense to organise the user ex-
periments in scientific communities with similar and dissimilar re-use dynamics. This
would provide evidence whether the developed model of re-use dynamics is generic
enough and allows us to determine whether the conclusions drawn based on one do-
main translates to another domain.

A better understanding of workflow re-use and discovery behaviour

Factors driving human similarity search. The range of plausible hypotheses put for-
ward in user experiment 1 to uncover patterns of searching and matching bioinformati-
cians use remains untested. The recording of such behaviour would help the design of
future discovery tools. One useful addition to the existing hypotheses is to measure the
relevance of the workflow similarity and complementarity metrics defined in Chapter 2
for human decision making. Another possible addition is to measure how participants
deal with quality of service data in workflows.

CHAPTER 8. CONCLUSIONS 195

Investigating navigation as search behaviour. Our approach towards discovery has
largely ignored the navigation search paradigm. It is worthwhile to explore how a nav-
igation based approach, using for example hypertext, compares with (or complements)
a query-based tool.

Relevance assessment through execution. All user experiments consisted of paper-
based exercises. Workflows however are programs and running a program makes peo-
ple understand them better. One should not ignore the impact that trying to execute a
workflow has on determining its relevance for a given re-use task.

Log-based analysis. As more workflows get discovered on workflow sharing sites
such as myExperiment.org, analysis of such sites’ log files provides a valuable resource
to identify human workflow discovery behaviour.

A suite of benchmarks for workflow re-use and discovery

A generic benchmark for the scientific workflow community. Our developed suite of
benchmarks captures re-use behaviour in data flows. Each scientific workflow system
capable of modelling data flows should be able to re-model the workflows used into
its own language.2 It could then test its own discovery system with respect to the
benchmarks. The fact that the workflows are from bioinformatics should not matter
provided the discovery system in place is domain independent.

Guidance for the selection of workflow matching types We identified a number of
workflow matching types. Which type is the most appropriate for a given workflow
discovery task depends on the application domain. Analysis of specific re-use cases
should yield heuristics to guide the choice. The collected benchmark could serve as
the basis for such an analysis. This in turn could guide the design of discovery tools.

Analysis of edit operations. User experiment 5 collected the editing of workflows
to solve the set tasks. The capture and analysis of the edit operations in this experiment
should provide a useful resource to train and evaluate future techniques which take into
account workflow structure and workflow complementarity.

2An exception are those services in the workflows that are of a type that is specific to the Taverna
workbench.

CHAPTER 8. CONCLUSIONS 196

8.2.3 Supporting workflow discovery with automated techniques

Automated discovery techniques

Deploying the considered techniques. None of the techniques considered in the thesis
have been deployed in an operational setting. To deploy the GUB4WF graph matching
based tool for cross-author discovery tasks, the addition of a lexical component would
be essential. As for Woogle4WF text clustering based tool, it is brittle when it comes
to spelling errors but it has proven a useful tool for finding similar workflows. The JM-
Feta semantic service discovery tool was not useful for finding complementary work-
flows. Further tests on Benchmark 3 should reveal whether JMFeta is more effective
on retrieving similar workflows. The Google API based wrapper is likely to be more
useful if workflows were published as rendered Web pages and not just unprocessed
files. One possibility would be to publish them on a place like the myExperiment.org
site.

Inexact graph matching. One promising area to look at for novel tool development
is inexact graph matching. The Relaxation by Elimination graph matcher developed at
the Advanced Computer Architecture Group at York and its commercial spin-off, Cy-
bula, is one example of a robust, expressive and optimised inexact graph matcher. The
addition of a lexical component to the matcher could prove a powerful combination
to address both workflow similarity and complementarity based tasks over workflow
corpora authored by different authors. The VisTrails system holds a similar promise.
It implements an inexact graph matcher without a lexical component [SVK+07].

Generating workflow annotations. Techniques to address the knowledge acquisi-
tion bottleneck for workflows are needed. Techniques from service ontology learning
and automated service annotation are promising in this respect. One could extend such
work to address the identification and classification of workflow fragments, by taking
into account the structure of fragments when applying the machine learning techniques
this type of work relies on. Techniques from Web page usability mining also promise
to assist in capturing the behaviour of scientists as they construct a workflow, make
mistakes and then take corrective actions.

The power of the crowd. Web 2.0 style “tags” and social networks are a further
source of workflow annotation. As scientists become more accustomed to on-line so-
cial networks and to tagging their workflows, such networks and tag clouds will be-
come more relevant. How and at what level a workflow and its constituent services
would be described, compared and their similarities aggregated are open questions.

CHAPTER 8. CONCLUSIONS 197

Interaction between composition and discovery tools. Discovery tools working
over a pool of existing workflows (i.e. detecting workflow extensions) co-exist with
composition tools that predict potentially valid service compositions. The two classes
of tools can (i) complement each others findings (for example when no particular ser-
vice combination has ever been made before, whereas semantic information indicates
that two services are compatible; or no semantic annotation is available but the work-
flow repository contains a particular service combination), or (ii) reinforce each others
findings (for example when both approaches provide evidence for a particular work-
flow extension). What are the interaction models for these tools - which type of tools
should be given more weight when?

Interaction between syntactic and semantic matching. Discovery relies on the no-
tion of data, service and workflow fragment similarity (and complementarity). Simi-
larity at the syntactic level does not imply semantic similarity. Conversely, similarity
at the semantic level does not imply syntactic similarity. For example, at the data level,
polynomous data sets may be referring to the same data set. At the service operation
level, parameter names may use different terminology and structural types to indicate
the same concept. At the workflow level, different compositions of services in different
workflows can represent identical functionality. How do we manage and resolve the
conflicts between the syntactic and semantic level all the way up the workflow stack,
from data products to services to complete workflows?

Interaction between workflow lifecycle stages. The flexible interaction between
workflow discovery techniques for concrete workflows and techniques for querying
provenance logs, Web services and electronic lab books will facilitate the workflow
design and re-use process. How can we find workflow designs based on wet lab proto-
cols, mindmaps, provenance records? How can we find relevant provenance logs based
on workflow designs (editing context), wet lab protocols, mindmaps?

Hybrid approaches. Workflow documentation for concrete workflows comes in
different guises (identifiers, text, tags, ontology concepts, publications). Techniques
that are able to combine the different sources of information associated with a single
workflow are likely to be more robust and more effective. One potential way to ap-
proach the problem is through the lightweight combination of existing techniques and
the introduction of a voting scheme on top to weigh the relative importance of the tech-
niques. What are the interaction models for these tools - which type of tools should be
given more weight when?

CHAPTER 8. CONCLUSIONS 198

Evaluation of automated discovery techniques

Measuring subjective technique performance. For user experiment 5, the performance
of the techniques in the eyes of scientists could be measured by having the partici-
pants rate the anonymised results of the techniques and compare them with their own
anonymised results and those from other participants.

Scalability. An issue that was considered out of scope for the thesis was the re-
sponsiveness and accuracy of the considered tools in terms of the size of the repository
of workflows.

Appendix A

List of Participants for User
Experiment 5

1. (Anonymous), Lawrence Livermore National Laboratory, USA

2. Adam Barker, National eScience Centre, UK

3. Anika Joecker, Max-Planck Institute for Plant Breeding Research, Germany

4. Arnaud Kerhornou, European Bioinformatics Institute, UK

5. Bela Tiwari, NERC Environmental Bioinformatics Centre, CEH Oxford, UK

6. Ben Mahy, Vlaams Instituut voor Biotechnologie, Universiteit Gent, Belgium

7. Benjamin Good, iCAPTURE Centre, University of British Columbia, Canada

8. Cornelia Hedeler, School of Computer Science, University of Manchester, UK

9. Duncan Hull, School of Chemistry, University of Manchester, UK

10. Francois Moreews, SIGENAE team, INRA, France

11. Giovanni Dall’Olio, Grup de Recerca en Informatica Biomedica, IMIM, Spain

12. Hannah Tipney, University of Colorado Denver Health Sciences, USA

13. Helen Hulme, School of Computer Science, University of Manchester, UK

14. Lin Ching - Fong, National Yang-Ming University, Taiwan

199

APPENDIX A. LIST OF PARTICIPANTS FOR USER EXPERIMENT 5 200

15. Marco Roos, Instituut voor Informatica, Universiteit van Amsterdam, The Nether-
lands

16. Mark Wilkinson, iCAPTURE Centre, University of British Columbia, Canada

17. Mike Cornell, School of Computer Science, University of Manchester, UK

18. Nathan Nicely, Renaissance Computing Institute (UNC), USA

19. Paolo Romano, Bioinformatica, Istituto Nazionale per la Ricerca sul Cancro,
Italy

20. Peter Li, School of Chemistry, University of Manchester, UK

21. Peter Rice, European Bioinformatics Institute, UK

22. Pieter Neerincx, Wageningen Universiteit en Researchcentrum, The Netherlands

23. Tim Booth, NERC Environmental Bioinformatics Centre, CEH Oxford, UK

24. Wu I-Ching, National Yang-Ming University, Taiwan

Appendix B

Participant Instructions for User
Experiment 5

The following text includes verbatim the text that was distributed to the participants.
The A1 posters made reference to in the text are included in reduced format in Appen-
dices C and D.

myExperiment - Taverna workflow re-use exercise

Hello,

Many thanks for agreeing to participate in this exercise. Our goal is to find out how
you re-use and repurpose workflows, selected from the myExperiment.org repository,
to solve a set bioinformatics task. Your answers will greatly help us in building tools
to support a “workflow by example” style to workflow authoring.

201

APPENDIX B. PARTICIPANT INSTRUCTIONS FOR USER EXPERIMENT 5 202

We will record how you go about the discovery and editing of workflows from the
repository (referred to as “candidate workflows”) in order to change a workflow you
are thought to be working on (“your workflow”). All workflows were created with the
Taverna workbench by twelve different authors.1

You are asked to solve tasks by making drawings and comments on paper dia-
grams of workflows. Most diagrams have been annotated with information about
the task of a workflow and its services, both in natural language and with [seman-
tic tags] from the myGrid bioinformatics service ontology (navigateable as a Web site
at http://www.mygrid.org.uk/ontology/OwlDoc/index.html). This
bundle also contains an appendix containing a list of common abbreviations.

Please do not be alarmed by the size of the exercise package :-) In a pilot study,
the completion of the exercises took participants about two and a half hours. There are
three steps:
1. (Important!) instructions on how to solve the exercises
2. A bundle of exercises, including a worked example
3. A survey about your experience

Please try to complete the exercises within two weeks of receiving them.
Many thanks again for your participation. We look forward to your answers and

will keep you updated on your results and those of your colleagues!

Antoon Goderis, Franck Tanoh, Paul Fisher and Carole Goble
myGrid/Taverna/ myExperiment team

1. Instructions on how to solve the exercises
The exercises are designed to capture a range of tasks which occur when re-using

and integrating bioinformatics workflows. The intent is to have you create workflows
that would be fully functional if you were to do this in a real workflow editor and not
on paper.

There are two parts. In part 1, only the workflow diagram is shown. In part 2,
documentation is provided. In each part, exercises are ordered by increasing difficulty.
Afterwards, in a short survey, we will ask how long it took you in total to solve the
entire batch of 11 exercises and poll for your experiences.

Now please take a look at the poster labelled “Example exercise.”

1Our thanks to the Bioanalytical Sciences Group and Bio Health Informatics Group, U. Manchester;
the Munich Information Center for Protein Sequences, Germany; National Cancer Research Institute,
Italy; the Rice Group, European Bioinformatics Institute, UK and the SIGENAE team, INRA, France.

http://www.mygrid.org.uk/ontology/OwlDoc/index.html �

APPENDIX B. PARTICIPANT INSTRUCTIONS FOR USER EXPERIMENT 5 203

Each individual exercise is self contained on one poster.2 It contains the workflow
you are thought to be working on (“your workflow”) and five candidate workflows.
“Your workflow” is indicated by a circle around its number (“1” in the example poster).
The poster also contains the task description at the bottom (“Based on workflow (1),
obtain a list of gene identifiers. . . ”) and a feedback box.

Each exercise has three steps to it:
A. The discovery step (indicated by “A” for each candidate workflow in the exam-
ple),
B. The editing step (“B”) and
C. The feedback step (“C”).

A. The discovery step
This involves assigning a relevance assessment (“yes/no/maybe”) to the candidate

workflows (i.e. workflows 6, 8, 2, 12 and 17 in the example) with respect to how useful
they are for solving the task given your workflow (i.e. workflow 1). In case you choose
“maybe,” please provide a reason. Note that multiple (or no) solutions may exist for
an exercise, and that the combination of different candidate workflows may be needed
to reach a solution.

B. The editing step
In this step you should edit a relevant workflow. This involves integrating a frag-

ment of a relevant candidate workflow with your workflow.
Now please turn to the next poster in the bundle, labelled “Editing”.
To solve a given task, you can edit workflows in different ways.
You will notice there are four possibilities to edit a workflow:

1. to put a workflow fragment at the end of your workflow,
2. to put it in front,
3. to replace a fragment or
4. to insert one.

Which of these cases is needed to solve a particular task will be up to you to decide!
During editing, you should do three things (as shown on the poster for each case):

1. Select the necessary and sufficient workflow fragment(-s) from a candidate work-
flow by circling it.
2. Connect it to your workflow by drawing the required connections between inputs

2Note that the exercise diagrams have been stripped from colour since colour reflects a Taverna
Processor’s type (Web service, local Java class,..), which does not matter for this exercise.

APPENDIX B. PARTICIPANT INSTRUCTIONS FOR USER EXPERIMENT 5 204

and outputs.
3. Cross out the parts that are no longer needed in your workflow.

To illustrate what the practical outcome of the editing action would be for each
case, we have added the resulting workflow. Within the resulting workflow the bits
coming from the candidate workflow are highlighted with a dotted box. As the exer-
cise is performed on paper, you will only be making the connections and not see the
resulting workflow on its own.

Now please return to the poster labelled “Example exercise.”
You should be able to interpret the editing action between workflow 1 and workflow

2 now – it corresponds to the case of adding a fragment at the end of a workflow in the
Editing poster.

C. The feedback step
After the editing step comes the feedback step. On the “Example exercise” poster,

observe feedback step (“C”), which asks to assess the difficulty of the exercise and
your confidence in solving it.

In addition, for the second part of the exercises you will be asked to specify how
useful the available documentation and annotation was for doing the task:
1. “Indicate the workflows (if any) where the diagram alone provides enough
information to determine whether the workflow is a solution or not.”

List when and why you were able to determine from the diagram information alone
whether a workflow was relevant and how it should be edited.
• E.g. none of the diagram boxes in workflow 12 had anything about BLAST which
was enough for the exercise participant to decide against using it. She also decided
that the information contained in the diagram of workflow 2 was enough to decide that
that workflow was relevant and could be edited to solve the task (so in this case she
decided in favour of using it).
2. “Indicate the workflows (if any) where the [semantic tagging] provides es-
sential information to determine whether the workflow is a solution or not.”

List when and why you found the semantic tagging to be indispensible for the out-
come of the exercise, and it was not just replicating the natural language text.
• E.g. the participant felt that in service 3 on workflow 17, the semantic tag describ-
ing “Result” as a multiple sequence alignment report made it clear that “Result” was
not a BLAST report and hence the workflow was irrelevant to solve the task.

Please feel free to write on the posters if you find places where, in your view, the
documentation or annotation is confusing, wrong, or it is needed but missing.

APPENDIX B. PARTICIPANT INSTRUCTIONS FOR USER EXPERIMENT 5 205

That’s it - you are now ready to start the exercises. Once you are finished, you can
have the treat included in the tube ;-) If you are unclear about the instructions, please
contact Antoon Goderis by phone on +44 161 275 0675 or e-mail on goderisa@cs.man.ac.uk.
Good luck!

3. Exercises feedback and workflow re-use experiences
(please complete this after solving the exercises)

To complete the exercise, please go on-line and visit
http://myexperiment.org/exercise

4. Return the solutions
Please return the A1 sheets to us by post. Please make sure we can identify your

package, by including your name or a business card somewhere.
Included in the tube you will find return postage as well as the return address on a

sticky label. Please attach both to the tube.
Many thanks again for your participation. We will be in touch!

Antoon Goderis, Franck Tanoh, Paul Fisher and Carole Goble

List of common options/abbreviations

All fields (omitted from this appendix) with which the following databases can be
queried: Ebi medline2007, ebi uniprot, ebi srslinks

Shiftincrement
This is the amount by which the window is moved at each increment in order to find
the melting point and other properties along the sequence.

windowsize
The values of melting point and other thermodynamic properties of the sequence are
determined by taking a short length of sequence known as a window and determining
the properties of the sequence in that window. The window is incrementally moved
along the sequence with the properties being calculated at each new position.

Seqret parameter name: sformatallowed values:
gcg, gcg8, embl, swiss, fasta, ncbi, genbank, nbrf, pir, codata, strider, clustal, phylip,
acedb, msf, jackknifer, jackknifernon, nexus, nexusnon, treecon, mega, meganon, ig,
staden, text, raw

APPENDIX B. PARTICIPANT INSTRUCTIONS FOR USER EXPERIMENT 5 206

Possible colour goviz web services : markTerm
(http://www.graphviz.org/doc/info/colors.html)

For the searchSimple service:
Parmeter name: database
Possible values: (omitted from this appendix)

Appendix C

Example Workflow Exercise for User
Experiment 5

207

APPENDIX C. EXAMPLE WORKFLOW EXERCISE FOR USER EXPERIMENT 5208

Appendix D

Possible Workflow Edit Operations for
User Experiment 5

209

APPENDIX D. POSSIBLE WORKFLOW EDIT OPERATIONS FOR USER EXPERIMENT 5210

Bibliography

[Agh86] G. Agha. Actors: A Model of Concurrent Computation in Distributed

Systems. MIT Press, Cambridge, MA, USA, 1986.

[BB91] A. Benveniste and G. Berry. The synchronous approach to reactive and
real-time systems. Proceedings of the IEEE, 79:1270–1282, Septem-
ber 1991.

[BBS06] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time
components in bip. In International Conference on Software Engi-

neering and Formal Methods (SEFM), pages 3–12, Pune, 2006.

[BCM+03] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi,
and Peter Patel Schneider. The Description Logic Handbook : Theory,

Implementation and Applications. Cambridge University Press, 2003.

[BEKM06] Catriel Beeri, Anat Eyal, Simon Kamenkovich, and Tova Milo. Query-
ing business processes. In VLDB, pages 343–354, 2006.

[BEP06] Khalid Belhajjame, Suzanne M. Embury, and Norman W. Paton. On
characterising and identifying mismatches in scientific workflows. In
DILS, pages 240–247, 2006.

[BG98] Joe Bullock and Carole Goble. Tourist: the application of a description
logic based semantic hypermedia system for tourism. In 9th ACM

conference on Hypertext and hypermedia, pages 132–141, 1998.

[BG99] S. Bechhofer and C. Goble. Classification Based Navigation and Re-
trieval for Picture Archives. In IFIP WG2.6 Conference on Data Se-

mantics, DS8, Rotorua, New Zealand, January 1999.

211

BIBLIOGRAPHY 212

[BGL+04] Daniela Berardi, Giuseppe De Giacomo, Maurizio Lenzerini, Mas-
simo Mecella, and Diego Calvanese. Synthesis of underspecified com-
posite e-services based on automated reasoning. In 2nd International

Conference on Service Oriented Computing ICSOC, pages 105–114.
ACM Press, 2004.

[BHLM94] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A
framework for simulating and prototyping heterogeneous systems. Int.

Journal of Computer Simulation, special issue on Simulation Software

Development, 4:155–182, 1994.

[BK02] Abraham Bernstein and Mark Klein. Towards high-precision service
retrieval. In Proceedings of the First International Semantic Web Con-

ference (ISWC), Sardinia, Italy, 2002. Springer.

[BKBK05] A. Bernstein, E. Kaufmann, C. Brki, and M. Klein. How similar is it?
towards personalized similarity measures in ontologies. In 7 Interna-

tionale Tagung Wirtschaftsinformatik, February 2005.

[BKT02] S. Brandt, R. Küsters, and A.-Y. Turhan. Approximation and differ-
ence in description logics. In KR2002, pages 203–214, San Francisco,
USA, 2002.

[BLL+05] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Zheng.
Heterogeneous concurrent modeling and design in java. Tech. Report
UCB/ERL M05/21, University of California, Berkeley, July 15 2005.

[BLNC06] S. Bowers, B. Ludaescher, A.H.H. Ngu, and T. Critchlow. Enabling
scientific workflow reuse through structured composition of dataflow
and control-flow. In IEEE Workshop on Workflow and Data Flow for

Scientific Applications (SciFlow), 2006.

[BMW03] M.-J. Blin, Claudia Bauzer Medeiros, and Jacques Wainer. A reuse-
oriented workflow definition language. Int. J. of Cooperative Informa-

tion Systems, 12(1):1–37, 2003.

[BP98] S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engine. WWW7 / Computer Networks, 30(1-7):107–117, 1998.

BIBLIOGRAPHY 213

[BYRN99] Ricardo Baeza-Yates and Berthier Ribiero-Neto. Modern Information

Retrieval. Addison-Wesley, 1999.

[CCC+04] A. Cali, D. Calvanese, S. Colucci, T. Di Noia, and F. M. Donini. A de-
scription logic based approach for matching user profiles. In DL2004,
Whistler, British Columbia, Canada, 6-8 June 2004.

[CGB06] J. C. Corrales, D. Grigori, and M. Bouzeghoub. Bpel processes match-
making for service discovery. In Conference on Cooperative Infor-

mation Systems (COOPIS), LNCS 4275, pages 237–254, Montpellier,
France, 2006.

[CGL98] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability
of query containment under constraints. In 17th ACM SIGACT SIG-

MOD SIGART Symp PODS, pages 149–158, 1998.

[CGWG07] V. Curcin, M. Ghanem, P. Wendel, and Y. Guo. Heterogeneous work-
flows in scientific workflow systems. In Proc. of the 2nd Int. Work-

shop on Workflow Systems in e-Science (WSES 07) in conjunction with

the Int. Conference on Computational Science (ICCS) 2007, Beijing,
China, May 27-30 2007.

[CNS+04] S. Colucci, T. Di Noia, E. Di Sciascio, F.M. Donini, and M. Mongiello.
A uniform tableaux-based approach to concept abduction and contrac-
tion in aln. In DL2004, Whistler, British Columbia, Canada, 6-8 June
2004.

[DBG+04] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M. H.
Su, K. Vahi, and M. Livny. Pegasus: Mapping scientific workflow onto
the grid. In Across Grids Conference, Nicosia, Cyprus, 2004.

[DHM+04] X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang. Similar-
ity search for web services. In Proc.s of the 30th VLDB Conference,
Toronto, Canada, 2004.

[DS04] M. Dean and G. Schreiber. OWL Web Ontology Language Refer-
ence. W3C Recommendation, World Wide Web Consortium. www.

w3.org/TR/owl-ref, 2004.

www.w3.org/TR/owl-ref�
www.w3.org/TR/owl-ref�

BIBLIOGRAPHY 214

[DS05] Schahram Dustdar and Wolfgang Schreiner. A survey on web services
composition. Int. J. Web and Grid Services, 1(1), 2005.

[EJL+03] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong. Taming heterogeneity—the ptolemy
approach. Proceedings of the IEEE, 91:127–144, January 2003.

[FHW+07] Paul Fisher, Cornelia Hedeler, Katherine Wolstencroft, Helen Hulme,
Harry Noyes, Stephen Kemp, Robert Stevens, and Andrew Brass. A
systematic strategy for large-scale analysis of genotype phenotype cor-
relations: identification of candidate genes involved in african try-
panosomiasis. Nucleic Acids Research, 35(16):5625–5633, August
2007.

[For04] Unicore Forum. Unicore plus final report: Uniform interface to com-
puting resource. Technical report, http://www.unicore.org/
documents/UNICOREPlus-Final-Report.pdf, 2004.

[GDE+07] Yolanda Gil, Ewa Deelman, Mark Ellisman, Thomas Fahringer, Geof-
frey Fox, Dennis Gannon, Carole Goble, Miron Livny, Luc Moreau,
and Jim Myers. Examining the challenges of scientific workflows.
Computer, 40(12):24–32, December 2007.

[GHS95] Dimitrios Georgakopoulos, Mark F. Hornick, and Amit P. Sheth. An
overview of workflow management: From process modeling to work-
flow automation infrastructure. Distributed and Parallel Databases,
3(2):119–153, 1995.

[GL05] C. Goble and B. Ludaescher, editors. ACM Sigmod Record: Special

Issue on Scientific Workflows, volume 34. September 2005.

[GLL99] A. Girault, B. Lee, and E. A. Lee. Hierarchical finite state machines
with multiple concurrency models. IEEE Transactions On Computer-

aided Design Of Integrated Circuits And Systems, 18:742–760, 1999.

[Gol01] R. L. Goldstone. MIT encyclopedia of the cognitive sciences, chapter
Similarity, pages 757–759. MIT Press, Cambridge, MA, 2001.

http://www.unicore.org/documents/UNICOREPlus-Final-Report.pdf�
http://www.unicore.org/documents/UNICOREPlus-Final-Report.pdf�

BIBLIOGRAPHY 215

[GRD+07] Yolanda Gil, Varun Ratnakar, Ewa Deelman, Gaurang Mehta, and Ji-
hie Kim. Wings for pegasus: Creating large-scale scientific applica-
tions using semantic representations of computational workflows. In
Proceedings of the 19th Annual Conference on Innovative Applica-

tions of Artificial Intelligence (IAAI), Vancouver, British Columbia,
Canada, July 22-26 2007.

[Gro07a] Paul Groth. The Origin of Data: Enabling the Determination of Prove-

nance in Multi-institutional Scientific Systems through the Documen-

tation of Processes. Phd thesis, University of Southampton, 2007.

[Gro07b] GrADS Users Group. GrADS Userś Guide. http://www.

iges.org/grads/gadoc/users.html, Last accessed: De-
cember 2007 2007.

[Gro07c] GrADS Users Group. GridFlow Online Manual. http://

gridflow.ca/latest/doc/index.html, Last accessed: De-
cember 2007 2007.

[GSLG05] Antoon Goderis, Ulrike Sattler, Phillip Lord, and Carole Goble. Seven
bottlenecks to workflow reuse and repurposing. In Int. Semantic Web

Conference ISWC05, volume 3792, pages 323–337, Galway, Ireland,
2005.

[GWS+02] R. Mark Greenwood, Chris Wroe, Robert Stevens, Carole A. Goble,
and Matthew Addis. Position paper: Are bioinformaticians doing e-
business? In EuroWeb, 2002.

[GZL07] M.-K. Leung G. Zhou and E. A. Lee. A code generation framework for
actor-oriented models with partial evaluation. In International Confer-

ence on Embedded Software and Systems (ICESS), LNCS 4523, pages
786–799, Daegu, Korea, 2007. Springer.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Sci-

ence of Computer Programming, 8:231–274, 1987.

[HB07] C. Hardebolle and F. Boulanger. Modhel’x: A component-oriented
approach to multi- formalism modeling. In MODELS 2007 workshop

on Multi- Paradigm Modeling, Nashville, Tennessee, USA, 2007.

http://www.iges.org/grads/gadoc/users.html�
http://www.iges.org/grads/gadoc/users.html�
http://gridflow.ca/latest/doc/index.html�
http://gridflow.ca/latest/doc/index.html�

BIBLIOGRAPHY 216

[Hew77] C. Hewitt. Viewing control structures as patterns of passing messages.
Journal of Artificial Intelligence, 8:323–363, 1977.

[HPSvH03] I. Horrocks, P. Patel-Schneider, and F. van Harmelen. From SHIQ
and RDF to OWL: The making of a web ontology language. J. of Web

Semantics, 1(1):7–26, 2003.

[HS03] I. Horrocks and U. Sattler. Decidability of SHIQ with Complex Role
Inclusion Axioms. In IJCAI-03, Acapulco, Mexico, 2003.

[HT02] Tony Hey and Anne Trefethen. The uk e-science core program and
the grid. In International Conference on Computational Science, vol-
ume 1, pages 3–21, 2002.

[HZB+06] D. Hull, E. Zolin, A. Bovykin, I. Horrocks, U. Sattler, and R. Stevens.
Deciding semantic matching of stateless services. In Proc. of

AAAI’2006, 2006.

[JH98] Gregor Joeris and Otthein Herzog. Managing evolving workflow spec-
ifications. In 3rd IFCIS International Conference on Cooperative In-

formation Systems (CoopIS98), pages 310–319, New York, August
1998.

[JS05] A. Jantsch and I. Sander. Models of computation and languages for
embedded system design. IEEE Proceedings on Computers and Digi-

tal Techniques, 152:114–129, March 2005.

[Kar03] Nikiforos Karamanis. Entity Coherence for Descriptive Text Structur-

ing. Phd thesis, School of Informatics, University of Edinburgh, 2003.

[KBL+07] Christoph Kiefer, Abraham Bernstein, Hong Joo Lee, Mark Klein, and
Markus Stocker. Semantic process retrieval with iSPARQL. In Euro-

pean Semantic Web Conference (ESWC), pages 609–623, 2007.

[KGR06] J. Kim, Y. Gil, and V. Ratnakar. Semantic metadata generation for
large scientific workflows. In Int. Semantic Web Conference (ISWC),
Athens, USA, November 5-9 2006.

[KLP] D. Koller, A. Levy, and A. Pfeffer. P-classic: A tractable probabilis-
tic description logic. In AAAI 1997, pages 390–397, Rhode Island,
August.

BIBLIOGRAPHY 217

[KLP+04] U. Keller, R. Lara, A. Polleres, et al. Wsmo web service discovery.
WSML Working Draft D5.1 v0.1, University of Innsbruck, 12 Novem-
ber 2004.

[KM77] G. Kahn and D. B. MacQueen. Information Processing, chapter
Coroutines and Networks of Parallel Processes. North-Holland Pub-
lishing Co, 1977.

[Kru92] Charles W. Krueger. Software reuse. ACM Comput. Surv., 24(2), 1992.

[KWJ+04] R. King, K. Whelan, F. Jones, P. Reiser, C. Bryant, S. Muggleton,
D. Kell, and S. Oliver. Functional genomic hypothesis generation and
experimentation by a robot scientist. Nature, 427(247-252), 2004.

[LAB+05] B. Ludaescher, I. Altintas, C. Berkley, et al. Scientific workflow man-
agement and the kepler system. Concurrency and Computation: Prac-

tice and Experience, Special Issue on Scientific Workflows, 2005.

[Las05] G. Von Laszewski. Java cog kit workflow concepts for scientific ex-
periments. Technical report, Argonne National Laboratory, Argonne,
IL, USA, 2005.

[LAWG05] Phillip Lord, Pinar Alper, Chris Wroe, and Carole Goble. Feta: A
light-weight architecture for user oriented semantic service discovery.
In European Semantic Web Conference, 2005. Accepted for Publica-
tion.

[LBW+04] Phillip Lord, Sean Bechhofer, Mark D. Wilkinson, Gary Schiltz,
Damian Gessler, Duncan Hull, Carole Goble, and Lincoln Stein. Ap-
plying semantic web services to bioinformatics: Experiences gained,
lessons learnt. In International Semantic Web Conference, pages 350–
364, 2004.

[LHJ+04] P. Li, K. Hayward, C. Jennings, K. Owen, T. Oinn, R. Stevens,
S. Pearce, and A. Wipat. Association of variations in i kappa b-epsilon
with graves’ disease using classical and mygrid methodologies. In
Proc UK e-Science All Hands Meeting, Nottingham, 31st August - 3rd
September 2004.

BIBLIOGRAPHY 218

[LPA06] Chen Y. Li P. and Romanovsky A. Measuring the dependability of web
services for use in e-science experiments. In 3rd International Service

Availability Symposium, Helsinki, Finland, May 15-16 2006.

[LR05] David Lambert and David Robertson. Matchmaking multi-party inter-
actions using historical performance data. In AAMAS ’05: Proceed-

ings of the fourth international joint conference on Autonomous agents

and multiagent systems, pages 611–617, New York, NY, USA, 2005.
ACM.

[LSV98] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for com-
paring models of computation. IEEE Transactions on CAD, 17(12),
December 1998.

[LZ07] E. A. Lee and H. Zheng. Leveraging synchronous language princi-
ples for heterogeneous modeling and design of embedded systems. In
EMSOFT, Salzburg, Austria, October 2007.

[MB00] B.T. Messmer and H. Bunke. Efficient subgraph isomorphism detec-
tion: a decomposition approach. IEEE Transactions on Knowledge

and Data Engineering, 12(2):307–323, Mar/Apr 2000.

[MB07] F. Maraninchi and T. Bhouhadiba. 42: Programmable models of com-
putation for a component-based approach to heterogeneous embedded
systems. In 6th ACM International Conference on Generative Pro-

gramming and Component Engineering (GPCE), Salzburg, Austria,
2007.

[MBE03] Brahim Medjahed, Athman Bouguettaya, and Ahmed K. Elmagarmid.
Composing web services on the semantic web. VLDB J., 12(4), 2003.

[MCH03] Thomas W. Malone, Kevin Crowston, and George A. Herman, editors.
Organizing Business Knowledge: The MIT Process Handbook. MIT
Press, 2003.

[MHH] D. Miers, P. Harmon, and C. Hall. The 2007 bpm suites report.
http://www.bptrends.com.

[MM03] Sheila A. McIlraith and David L. Martin. Bringing semantics to web
services. IEEE Intelligent Systems, January - February 2003.

BIBLIOGRAPHY 219

[MPAD+05] C. B. Medeiros, J. Perez-Alcazar, L. Digiampietri, G. Z. Pastorello
Jr, A. Santanche, R. S. Torres, E. Madeira, and E. Bacarin. Woodss
and the web: Annotating and reusing scientific workflows. SIGMOD

Record Special Issue on Scientific Workflows, 34(3), September 2005.

[MSST93] C. Meghini, F. Sebastiani, U. Straccia, and C. Thanos. A model of
information retrieval based on a terminological logic. In 116th ACM

SIGIR, pages 298 – 307, Pittsburgh, Pennsylvania, 1993.

[MW06] Bendick Mahleko and Andreas Wombacher. Indexing business pro-
cesses based on annotated finite state automata. In ICWS, pages 303–
311, 2006.

[MWG04] Shalil Majithia, David W. Walker, and W.A. Gray. Automated web
service composition using semantic web technologies. In Proceedings

of the International Conference on Autonomic Computing (ICAC’04),
New York, New York, 17 - 18 May 2004.

[MYA+04] Stephen McGough, Laurie Young, Ali Afzal, Steven Newhouse, and
John Darlington. Workflow enactment in iceni. In Proceedings of

Fourth All Hands Meeting (AHM04), Nottingham, 20 - 22nd Septem-
ber 2004.

[NHG06] Falk Neubauer, Andreas Hoheisel, and Joachim Geiler. Workflow-
based grid applications. Future Generation Computer Systems, 22(1-
2):6–15, 2006.

[OGA+05] Tom Oinn, Mark Greenwood, Matthew Addis, Nedim Alpdemir,
Justin Ferris, Kevin Glover, Carole Goble, Antoon Goderis, Duncan
Hull, Darren Marvin, Peter Li, Phillip Lord, Matthew Pocock, Mar-
tin Senger, Robert Stevens, Anil Wipat, and Chris Wroe. Taverna:
Lessons in creating a workflow environment for the life sciences. Con-

currency and Computation: Practice and Experience: Special Issue

on Scientific Workflows, 2005.

[Oin07] T. Oinn. Taverna 2 workflow specification. www.ebi.ac.uk/

˜tmo/docs/t2semantics.pdf, Last accessed 28 September
2007.

www.ebi.ac.uk/~tmo/docs/t2semantics.pdf�
www.ebi.ac.uk/~tmo/docs/t2semantics.pdf�

BIBLIOGRAPHY 220

[PA04] Cesare Pautasso and Gustavo Alonso. Jopera: a toolkit for efficient vi-
sual composition of web services. International Journal of Electronic

Commerce (IJEC), 9(2), 2004.

[PGM97] John Park, John Gennari, and Mark Musen. Mappings for reuse in
knowledge-based systems. Technical Report 97-0697, Stanford Med-
ical Informatics, 1997.

[PS04] H. D. Patel and S. K. Shukla. SystemC Kernel Extensions for Hetero-

geneous System Modelling. Kluwer, 2004.

[RS04] Jinghai Rao and Xiaomeng Su. A survey of automated web service
composition methods. In SWSWPC, pages 43–54, 2004.

[RtHvdAM06] N. Russell, A.H.M. ter Hofstede, W.M.P. van der Aalst, and N. Mulyar.
Workflow control-flow patterns: A revised view. BPM Center Report
BPM-06-22, 2006.

[SAB06] W. Sudholt, I. Altintas, and K.K. Baldridge. A scientific workflow in-
frastructure for computational chemistry on the grid. In 1st Int. Work-

shop on Computational Chemistry and Its Application in e-Science in

conjunction with ICCS, 2006.

[SC88] S. Siegel and J. N. Castellan. Nonparametric Statistics for the Behav-

ioral Sciences. McGraw-Hill, 1988.

[SEG+03] S. Al Sairaf, F. S. Emmanouil, M. Ghanem, N. Giannadakis, Y. Guo,
D. Kalaitzopolous, M. Osmond, A. Rowe, iJ. Syed, and P. Wendel.
The design of discovery net: Towards open grid services for knowl-
edge discovery. International Journal of High Performance Comput-

ing Applications, 2003.

[SPAS03] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan. Automated
discovery, interaction and composition of semantic web services. Web

Semantics: Science, Services and Agents on the WWW, 1(1):27–46,
2003.

[STW+04] R.D. Stevens, H.J. Tipney, C.J. Wroe, T.M. Oinn, M. Senger, P.W.
Lord, C.A. Goble, A. Brass, and M. Tassabehji. Exploring Williams
Beuren Syndrome Using myGrid. Bioinformatics, 20:303–310, 2004.

BIBLIOGRAPHY 221

[SVK+07] Carlos E. Scheidegger, Huy T. Vo, David Koop, Juliana Freire, and
Claudio T. Silva. Querying and creating visualizations by analogy.
IEEE Trans. Vis. Comp. Graph., 13(6):1560–1567, 2007.

[SVW06] Rajkumar Buyya Srikumar Venugopal and Lyle Winton. A grid ser-
vice broker for scheduling e-science applications on global data grids.
Concurrency and Computation: Practice and Experience, 18(6):685–
699, May 2006.

[TCS+04] F. Tao, L. Chen, N. Shadbolt, et al. Semantic web based content enrich-
ment and knowledge reuse in e-science. In CoopIS/DOA/ODBASE,
pages 654–669, 2004.

[TIR+07] Ioan Toma, Kashif Iqbal, Dumitru Roman, Thomas Strang, Dieter
Fensel, Brahmananda Sapkota, Matthew Moran, and Juan Miguel
Gomez. Discovery in grid and web services environments: A survey
and evaluation. Multiagent and Grid Systems Special Issue on Ad-

vances in Grid services Engineering and Management, 3(3):341–352,
2007.

[Tur06] D. Turi. Taverna workflows: Syntax and semantics. http://www.
mygrid.org.uk/wiki/Mygrid/TavernaSemantics, May
23 2006.

[Tve77] A. Tversky. Features of similarity. Psychological Review, 84:327–352,
1977.

[TWML01] Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny.
Condor – a distributed job scheduler. In Thomas Sterling, editor, Be-

owulf Cluster Computing with Linux. MIT Press, October 2001.

[vdA05] W.M.P. van der Aalst. Process mining in cscw systems. In Ninth Int.

Conference on Computer Supported Cooperative Work in Design, May
2005.

[vdAtHKB03] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros.
Workflow patterns. Distributed and Parallel Databases, 14(1):5–51,
2003.

http://www.mygrid.org.uk/wiki/Mygrid/TavernaSemantics�
http://www.mygrid.org.uk/wiki/Mygrid/TavernaSemantics�

BIBLIOGRAPHY 222

[WEB+07] B. Wassermann, W. Emmerich, B. Butchart, N. Cameron, L. Chen,
and J. Patel. Workflows for e-Science, chapter Sedna: A BPEL-based
environment for visual scientific workflow modelling, pages 428–449.
Springer, 2007.

[Wen06] Keith Wenson. The bpmn-xpdl-bpel value chain. Blog
entry; http://kswenson.wordpress.com/2006/05/26/

bpmn-xpdl-and-bpel, May 26 2006.

[WGG+04] Chris Wroe, Carole Goble, Mark Greenwood, Phillip Lord, Simon
Miles, Juri Papay, Terry Payne, and Luc Moreau. Automating experi-
ments using semantic data on a bioinformatics grid. IEEE Intelligent

Systems, January-February 2004.

[WGG+07] Chris Wroe, Carole Goble, Antoon Goderis, Phillip Lord, Simon
Miles, Juri Papay, Pinar Alper, and Luc Moreau. Recycling workflows
and services through discovery and reuse: Research articles. Concurr.

Comput. : Pract. Exper., 19(2):181–194, 2007.

[Wom06] A. Wombacher. Evaluation of technical measures for workflow simi-
larity based on a pilot study. In CoopIS, Montpellier, France, Novem-
ber 1-3 2006.

[WPF05] Marek Wieczorek, Radu Prodan, and Thomas Fahringer.
Scheduling of Scientific Workflows in the ASKALON
Grid Environment. ACM SIGMOD Record, 35(3), 2005.
http://dps.uibk.ac.at/ marek/publications/acm-sigmod-2005.pdf.

[WR06] A. Wombacher and M. Rozie. Piloting an empirical study on measures
for workflow similarity. In IEEE Int. Conference on Service Comput-

ing (SCC), Chicago, USA, September 18-22 2006.

[WSG+03] C. Wroe, R. Stevens, C. Goble, A. Roberts, and M. Greenwood. A
suite of daml+oil ontologies to describe bioinformatics web services
and data. Intl. J. of Cooperative Information Systems, 12(2):197–224,
2003.

[YB05] Jia Yu and Rajkumar Buyya. A taxonomy of workflow management
systems for grid computing. Journal of Grid Computing, 3(3):171–
200, 9 2005.

http://kswenson.wordpress.com/2006/05/26/bpmn-xpdl-and-bpel�
http://kswenson.wordpress.com/2006/05/26/bpmn-xpdl-and-bpel�

BIBLIOGRAPHY 223

[ZBB+06] Zhiming Zhao, Suresh Booms, Adam Belloum, Cees de Laat, and Bob
Hertzberger. Vle-wfbus: A scientific workflow bus for multi e-science
domains. In E-SCIENCE ’06: Proceedings of the Second IEEE In-

ternational Conference on e-Science and Grid Computing, page 11,
Washington, DC, USA, 2006. IEEE Computer Society.

[Zha07] Jun Zhao. A conceptual model for e-science provenance. Phd thesis,
University of Manchester, 2007.

[ZWF06] Y. Zhao, M. Wilde, and I. Foster. Applying the virtual data provenance
model. In Int. Provenance and Annotation Workshop (IPAW), Chicago,
USA, May 3-5 2006.

[ZWG+04] Jun Zhao, Chris Wroe, Carole Goble, Robert Stevens, Dennis Quan,
and Mark Greenwood. Using semantic web technologies for repre-
senting e-science provenance. In Third International Semantic Web

Conference, Hiroshima, Japan, 2004.

